The nonequilibrium Green's function method is used to study the ballistic
transport in metallic carbon nanotubes when a current is injected from the
electrodes with finite bias voltages. We reveal, both analytically and
numerically, that large loop currents circulating around the tube are induced,
which come from a quantum mechanical interference and are much larger than the
current along the tube axis when the injected electron is resonant with a
time-reversed pair of degenerate states, which are, in fact, inherent in the
zigzag and chiral nanotubes. This results in large orbital magnetic moments,
making the nanotube a molecular solenoid.Comment: 5 pages, 4 figures; typos correcte