110 research outputs found

    Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene

    Full text link
    [EN] In this study, three different natural types of unmodified zeolite (chabazite, mordenite, and faujasite) were initially characterized for their morphology, elemental composition, and antimicrobial activity against foodborne bacteria and fungi. The chabazite-type zeolite was selected due to its optimal morphology and lowest silicon to aluminum ratio (Si/Al). This was then solution exchanged with different combinations of silver (Ag+), copper (Cu2+), and zinc (Zn2+) ions to prepare single, binary, and ternary metal cation-modified zeolites. Antimicrobial results clearly indicated that Ag-based zeolites exhibited more antimicrobial activity than Cu- and Zn-based zeolites. Interestingly, the multi-ionic zeolite, that is, the ternary Ag-Cu-Zn-zeolite, was the most efficient antimicrobial sample in terms of the amount of added silver. In the last step, the obtained multi-ionic zeolite was, for the first time, incorporated at different weight amounts (1, 5, 10, and 15 wt%) into a bio-based high-density polyethylene (bio-HDPE) matrix by extrusion and shaped into pieces by injection molding. Novel sustainable polymer composite pieces with improved stiffness and hardness and high antimicrobial activity were obtained. These treated materials offer industrial relevance to control the growth of harmful microorganisms in hygiene applications related to the food industry.Spanish Ministry of Economy and Competitiveness, Grant/Award Number: Project MAT2014-59242-C2-1-R; Conselleria d'Educacio, Cultura i Esport - Generalitat Valenciana, Grant/Award Number: GV/2014/008Torres-Giner, S.; Torres, A.; Ferrándiz, M.; Fombuena, V.; Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety. 37(4). https://doi.org/10.1111/jfs.12348Se1234837

    Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films

    Full text link
    [EN] In the present study, the effectiveness of a multilayer film of polylactide (PLA), fully bio-based and compostable, was ascertained to develop a novel sustainable packaging solution for the preservation of fresh pork meat. To this end, the multilayer PLA films were first characterized in terms of their thermal characteristics, structure, mechanical performance, permeance to water and aroma vapors and oxygen, and optical properties and, for the first time, compared with two commercial high-barrier multilayer packaging films. Thereafter, the multilayers were thermosealed to package fillets of fresh pork meat and the physicochemical changes, lipid oxidation levels, and microbiological counts were monitored in the food samples during storage under refrigeration conditions. Results showed that the meat fillets packaged in PLA developed a redder color and showed certain indications of dehydration and oxidation, being more noticeably after 11 days of storage, due to the higher water vapor and oxygen permeance values of the biopolymer multilayer. However, the pH changes and bacterial growth in the cold-stored fresh pork meat samples were minimal and very similar in the three tested multilayer films, successfully accomplishing the requirements of the food quality and safety standards at the end of storage.This research was funded by the Spanish Ministry of Science and Innovation (MICI), grant number PID2019-105207RB-I00. E.H.-G. and S.T.-G. acknowledge MICI for her predoctoral research grant (BES2017-082040) and his Ramón y Cajal contract (RYC2019-027784-I). The authors are also grateful to the Packaging Technologies Department of AINIA for the technical support provided during the determination of the multilayer structures. Derprosa is also acknowledged for gently providing the multilayer PLA film.Hernandez-Garcia, E.; Vargas, M.; Torres-Giner, S. (2022). Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films. Foods. 11(3):1-20. https://doi.org/10.3390/foods1103042612011

    Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine

    Full text link
    [EN] Zein, a prolamine obtained from maize, was employed to encapsulate a fish oil highly enriched with docosahexaenoic acid (DHA) by an innovative process termed electrospraying assisted by pressurized gas (EAPG). This technology combines high electric voltage with pneumatic spray to yield a high-throughput encapsulation process. Semi-spherical zein flowable capsules with mean sizes of 1.4 mu m containing the DHA-enriched fish oil were produced by EAPG from inert ethanol solutions at room conditions, presenting a high encapsulation efficiency. The oxidative stability tests carried out in the zein microcapsules obtained by EAPG showed that the DHA-enriched fish oil was efficiently protected over storage time. Sensory tests were also performed on fortified reconstituted milk with the freshly prepared zein/DHA-enriched fish oil microcapsules, suggesting negligible oxidation effects after 45 days. The results described herein indicate that EAPG is a promising innovative high-throughput electrospraying-based methodology for the encapsulation of bioactives and, therefore, the resultant DHA-enriched fish oil containing microcapsules can be industrially applied for the formulation of fortified foods. Industrial relevance: An innovative process, termed electrospraying assisted by pressurized gas (EAPG), is herein originally presented as a novel encapsulation methodology. This technology is based on the combination of high voltage and pneumatic spray, allowing the formation of microcapsules at room temperature conditions. Thus, EAPG shows a great deal of potential to encapsulate nutraceuticals and other bioactives that are sensitive to thermal degradation and/or oxidation. The resultant bioactive-containing capsules can be, thereafter, applied to develop novel fortified food products.The authors would like to thank the Spanish Ministry of Economy and Competitiveness (MINECO) project AGL2015-63855-C2-1-R and to the H2020 EU project YPACK (reference number 773872) for funding.Busolo, M.; Torres-Giner, S.; Prieto, C.; Lagaron, JM. (2019). Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innovative Food Science & Emerging Technologies. 51:12-19. https://doi.org/10.1016/j.ifset.2018.04.007S121951Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2012). The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Research International, 49(1), 379-388. doi:10.1016/j.foodres.2012.07.031Anwar, S. H., & Kunz, B. (2011). The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. Journal of Food Engineering, 105(2), 367-378. doi:10.1016/j.jfoodeng.2011.02.047Anwar, S. H., Weissbrodt, J., & Kunz, B. (2010). Microencapsulation of Fish Oil by Spray Granulation and Fluid Bed Film Coating. Journal of Food Science, 75(6), E359-E371. doi:10.1111/j.1750-3841.2010.01665.xBakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2015). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182. doi:10.1111/1541-4337.12179Busolo, M. A., & Lagaron, J. M. (2012). Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science & Emerging Technologies, 16, 211-217. doi:10.1016/j.ifset.2012.06.008Chen, W., Wang, H., Zhang, K., Gao, F., Chen, S., & Li, D. (2016). Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials. Applied Biochemistry and Biotechnology, 179(7), 1129-1142. doi:10.1007/s12010-016-2054-3Eltayeb, M., Stride, E., Edirisinghe, M., & Harker, A. (2016). Electrosprayed nanoparticle delivery system for controlled release. Materials Science and Engineering: C, 66, 138-146. doi:10.1016/j.msec.2016.04.001Encina, C., Vergara, C., Giménez, B., Oyarzún-Ampuero, F., & Robert, P. (2016). Conventional spray-drying and future trends for the microencapsulation of fish oil. Trends in Food Science & Technology, 56, 46-60. doi:10.1016/j.tifs.2016.07.014Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427-1432. doi:10.1016/j.foodhyd.2008.10.011Filippidi, E., Patel, A. R., Bouwens, E. C. M., Voudouris, P., & Velikov, K. P. (2014). All-Natural Oil-Filled Microcapsules from Water-Insoluble Proteins. Advanced Functional Materials, 24(38), 5962-5968. doi:10.1002/adfm.201400359Ganesan, B., Brothersen, C., & McMahon, D. J. (2013). Fortification of Foods with Omega-3 Polyunsaturated Fatty Acids. Critical Reviews in Food Science and Nutrition, 54(1), 98-114. doi:10.1080/10408398.2011.578221García-Moreno, P. J., Özdemir, N., Stephansen, K., Mateiu, R. V., Echegoyen, Y., Lagaron, J. M., … Jacobsen, C. (2017). Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 69, 273-285. doi:10.1016/j.foodhyd.2017.02.013García-Moreno, P. J., Stephansen, K., van der Kruijs, J., Guadix, A., Guadix, E. M., Chronakis, I. S., & Jacobsen, C. (2016). Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. Journal of Food Engineering, 183, 39-49. doi:10.1016/j.jfoodeng.2016.03.015Gomez-Estaca, J., Balaguer, M. P., Gavara, R., & Hernandez-Munoz, P. (2012). Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids, 28(1), 82-91. doi:10.1016/j.foodhyd.2011.11.013Heinzelmann, K., Franke, K., Jensen, B., & Haahr, A.-M. (2000). Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques. European Journal of Lipid Science and Technology, 102(2), 114-121. doi:10.1002/(sici)1438-9312(200002)102:23.0.co;2-0Hogan, S. A., O’Riordan, E. D., & O’Sullivan, M. (2003). Microencapsulation and oxidative stability of spray-dried fish oil emulsions. Journal of Microencapsulation, 20(5), 675-688. doi:10.3109/02652040309178355Hong, X., Mahalingam, S., & Edirisinghe, M. (2017). Simultaneous Application of Pressure-Infusion-Gyration to Generate Polymeric Nanofibers. Macromolecular Materials and Engineering, 302(6), 1600564. doi:10.1002/mame.201600564Lopez-Huertas, E. (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, 61(3), 200-207. doi:10.1016/j.phrs.2009.10.007Moomand, K., & Lim, L.-T. (2014). Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Research International, 62, 523-532. doi:10.1016/j.foodres.2014.03.054Park, J.-M., Kwon, S.-H., Han, Y.-M., Hahm, K.-B., & Kim, E.-H. (2013). Omega-3 Polyunsaturated Fatty Acids as Potential Chemopreventive Agent for Gastrointestinal Cancer. Journal of Cancer Prevention, 18(3), 201-208. doi:10.15430/jcp.2013.18.3.201Partanen, R., Raula, J., Seppänen, R., Buchert, J., Kauppinen, E., & Forssell, P. (2008). Effect of Relative Humidity on Oxidation of Flaxseed Oil in Spray Dried Whey Protein Emulsions. Journal of Agricultural and Food Chemistry, 56(14), 5717-5722. doi:10.1021/jf8005849Pereira, D., Valentão, P., & Andrade, P. (2014). Nano- and Microdelivery Systems for Marine Bioactive Lipids. Marine Drugs, 12(12), 6014-6027. doi:10.3390/md12126014Prieto, C., & Calvo, L. (2017). The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. The Journal of Supercritical Fluids, 128, 227-234. doi:10.1016/j.supflu.2017.06.003Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449-459. doi:10.1111/j.1365-277x.2004.00552.xShams, T., Parhizkar, M., Illangakoon, U. E., Orlu, M., & Edirisinghe, M. (2017). Core/shell microencapsulation of indomethacin/paracetamol by co-axial electrohydrodynamic atomization. Materials & Design, 136, 204-213. doi:10.1016/j.matdes.2017.09.052Shantha, N. C., & Decker, E. A. (1994). Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. Journal of AOAC INTERNATIONAL, 77(2), 421-424. doi:10.1093/jaoac/77.2.421Siriwardhana, N., Kalupahana, N. S., & Moustaid-Moussa, N. (2012). Health Benefits of n-3 Polyunsaturated Fatty Acids. Advances in Food and Nutrition Research, 211-222. doi:10.1016/b978-0-12-416003-3.00013-5Tapia-Hernández, J. A., Torres-Chávez, P. I., Ramírez-Wong, B., Rascón-Chu, A., Plascencia-Jatomea, M., Barreras-Urbina, C. G., … Rodríguez-Félix, F. (2015). Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. Journal of Agricultural and Food Chemistry, 63(19), 4699-4707. doi:10.1021/acs.jafc.5b01403Tihminlioglu, F., Atik, İ. D., & Özen, B. (2010). Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. Journal of Food Engineering, 96(3), 342-347. doi:10.1016/j.jfoodeng.2009.08.018Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601-614. doi:10.1016/j.foodhyd.2007.02.005Torres-Giner, S., Martinez-Abad, A., Ocio, M. J., & Lagaron, J. M. (2010). Stabilization of a Nutraceutical Omega-3 Fatty Acid by Encapsulation in Ultrathin Electrosprayed Zein Prolamine. Journal of Food Science, 75(6), N69-N79. doi:10.1111/j.1750-3841.2010.01678.xTorres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Vaughan, V. C., Hassing, M.-R., & Lewandowski, P. A. (2013). Marine polyunsaturated fatty acids and cancer therapy. British Journal of Cancer, 108(3), 486-492. doi:10.1038/bjc.2012.586Wang, Y., Liu, W., Chen, X. D., & Selomulya, C. (2016). Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. Journal of Food Engineering, 175, 74-84. doi:10.1016/j.jfoodeng.2015.12.007Woods, J., & Mellon, M. (1941). Thiocyanate Method for Iron: A Spectrophotometric Study. Industrial & Engineering Chemistry Analytical Edition, 13(8), 551-554. doi:10.1021/i560096a013Xiao, D., Davidson, P. M., & Zhong, Q. (2011). Release and antilisterial properties of nisin from zein capsules spray-dried at different temperatures. LWT - Food Science and Technology, 44(10), 1977-1985. doi:10.1016/j.lwt.2011.07.017Yang, H., Feng, K., Wen, P., Zong, M.-H., Lou, W.-Y., & Wu, H. (2017). Enhancing oxidative stability of encapsulated fish oil by incorporation of ferulic acid into electrospun zein mat. LWT, 84, 82-90. doi:10.1016/j.lwt.2017.05.045Zainal, Z., Longman, A. J., Hurst, S., Duggan, K., Caterson, B., Hughes, C. E., & Harwood, J. L. (2009). Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. Osteoarthritis and Cartilage, 17(7), 896-905. doi:10.1016/j.joca.2008.12.009Zeisel, S. H. (1999). Regulation of «Nutraceuticals». Science, 285(5435), 1853-1855. doi:10.1126/science.285.5435.1853Zhang, Y., Cui, L., Li, F., Shi, N., Li, C., Yu, X., … Kong, W. (2016). Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. International Journal of Pharmaceutics, 513(1-2), 191-210. doi:10.1016/j.ijpharm.2016.09.02

    Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil

    Full text link
    [EN] Thiswork reports the effect of acrylated epoxidized soybean oil (AESO) addition on the mechanical, thermal, and thermomechanical properties of polylactide (PLA) parts obtained by injection molding. To this end, AESO, a chemically multi-functionalized vegetable oil, was incorporated into PLA during melt processing. The PLA parts with AESO contents in the 2.5¿7.5 wt% range showed a remarkable enhancement in both elongation at break and impact-absorbed energy while their tensile and flexural strength as well as thermomechanical properties were maintained or slightly improved. Additionally, the AESO-containing PLA parts presented higher thermal stability and lower crystallinity. The improvement achievedwas ascribed to a dual effect of plasticization in combination with a chain-extension and/or cross-linking process of the PLA chains by the highly reactive acrylate and epoxy groups present in AESO. The use of AESO thus represents an environmentally friendly solution to obtain toughened PLA materials of high interest in, for instance, rigid packaging, automotive or building and construction applications.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) [grant numbers MAT2014-59242-C2-1-R & AGL2015-63855-C2-1-R]. L. Quiles-Carrillo thanks the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through the FPU program [grant number FPU15/03812].Quiles-Carrillo, L.; Duart, S.; Montanes, N.; Torres-Giner, S.; Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design. 140:54-63. https://doi.org/10.1016/j.matdes.2017.11.031S546314

    Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods

    Full text link
    [EN] A microwave-assisted extraction (MAE) procedure to obtain phenolic compounds from carob bark was optimized by using response surface methodology. A four-factor, three-level Box-Behnken design with five central points was used to evaluate the influence of temperature, solid-liquid ratio, ethanol concentration and time in carob bark extraction in terms of antioxidant activity (DPPH) and total extraction yield. Optimal extraction conditions were found using 80 ºC, 35% (v/v) ethanol, a ratio of 35 mL/g and 29.5 min. Total phenolics content (TPC), antioxidant activity (DPPH, FRAP, ABTS), carbohydrates content and main polyphenols composition (HPLC) were determined at optimal conditions. An experimental total yield of 66.5% was obtained with a TPC value of 33.6 mg GAE/g DW and polysaccharides content of 345.4 mg glucose/g DW. A high antioxidant activity was also shown by the three methods tested. The results showed the potential of carob pods skin as a natural source of phenolic compounds, in particular gallic acid, and the effectiveness of MAE as extraction technique for the revalorization of this agro-food waste.This research was supported by the Spanish Ministry of Science, Innovation and Universities (MICIU) programs MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R and by the EU H2020 project YPACK (reference number 773872). Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Torres-Giner also thank MINECO for his Juan de la Cierva contract (IJCI-2016-29675).Quiles-Carrillo, L.; Mellinas, C.; Garrigos, M.; Balart, R.; Torres-Giner, S. (2019). Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods. Food Analytical Methods. 12(11):2480-2490. https://doi.org/10.1007/s12161-019-01596-3S248024901211Almanasrah M, Roseiro LB, Bogel-Lukasik R, Carvalheiro F, Brazinha C, Crespo J, Kallioinen M, Mänttäri M, Duarte LC (2015) Selective recovery of phenolic compounds and carbohydrates from carob kibbles using water-based extraction. Ind Crop Prod 70:443–450Arrieta M, Sessini V, Peponi L, (2017) Biodegradable poly (ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. Eur Polym JBai XL, Yue TL, Yuan YH, Zhang HW (2010) Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J Sep Sci 33(23-24):3751–3758Balaban M (2004) Identification of the main phenolic compounds in wood of Ceratonia siliqua by GC-MS. Phytochem Anal 15(6):385–388Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S (2010) Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 120(4):1185–1192Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M (2007) Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem 100(4):1453–1455Bouli AA, Hansali M, Owen RW, (2010) Determination of phenolic composition of carob pods grown in different regions of Morocco. J Nat Prod 3Chemat F, Cravotto G (2012) Microwave-assisted extraction for bioactive compounds: theory and practice. Springer Science & Business Media.Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352Di Donato P, Taurisano V, Tommonaro G, Pasquale V, Jiménez JMS, de Pascual-Teresa S, Poli A, Nicolaus B (2017) Biological properties of polyphenols extracts from agro industry’s wastes. Waste Biomass Valorization, 1-12.El Ansari Zineb BM, Alain B, Ahmed L (2017) Total polyphenols and gallic acid contents in domesticated carob (Ceratonia siliqua L.) pods and leaves. Int J Pure App Biosci 5(4):22–30Ferreres F, Grosso C, Gil-Izquierdo A, Valentão P, Mota AT, Andrade PB (2017) Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chem 230:463–474Filip S, Pavlić B, Vidović S, Vladić J, Zeković Z (2017) Optimization of microwave-assisted extraction of polyphenolic compounds from Ocimum basilicum by response surface methodology. Food Anal Methods 10(7):2270–2280Hadrich B, Dimitrov K, Kriaa K, (2017) Modelling investigation and parameters study of polyphenols extraction from carob (Ceratonia siliqua L.) using experimental factorial design. J Food Process Preserv 41(2).Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W (2009) Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 70(1):63–70Hu S, Kim B-Y, Baik M-Y (2016) Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chem 194:1089–1094Huma ZE, Jayasena V, Nasar-Abbas SM, Imran M, Khan MK, (2017) Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J Food Process PreservHuma ZE, Jayasena V, Nasar-Abbas SM, Imran M, Khan MK (2018) Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J Food Process Preserv 42(2):e13450Karakaya SE, El SN, Taş AA (2001) Antioxidant activity of some foods containing phenolic compounds. Int J Food Sci Nutr 52(6):501–508Karami Z, Emam-Djomeh Z, Mirzaee HA, Khomeiri M, Mahoonak AS, Aydani E (2015) Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root. J Food Sci Technol 52(6):3242–3253Khlifa M, Bahloul A, Kitane S (2013) Determination of chemical composition of carob pod (Ceratonia siliqua L.) and its morphological study. J Mater Environ Sci 4(3):348–353Kumar N, Kaur P, Bhatia S, (2017) Advances in bio-nanocomposite materials for food packaging: a review.Nutr Food Sci 47(4)Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50(2):373–377Makris DP, Kefalas P (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42(2):105–108Makris DP, Boskou G, Andrikopoulos NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 20(2):125–132Manousaki A, Jancheva M, Grigorakis S, Makris DP (2016) Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: a comparison with conventional eco-friendly solvents. Recycling 1(1):194–204Meziani S, Oomah BD, Zaidi F, Simon-Levert A, Bertrand C, Zaidi-Yahiaoui R (2015) Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb Pathog 78:95–102Moreira MM, Barroso MF, Boeykens A, Withouck H, Morais S, Delerue-Matos C (2017) Valorization of apple tree wood residues by polyphenols extraction: comparison between conventional and microwave-assisted extraction. Ind Crop Prod 104:210–220Owis AI, El-Naggar E-MB (2016) Identification and quantification of the major constituents in Egyptian carob extract by liquid chromatography–electrospray ionization-tandem mass spectrometry. Pharmacogn Mag 12(Suppl 1):S1Pan X, Niu G, Liu H (2003) Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process Process Intensif 42(2):129–133Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in Carob Fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MS n. J Agric Food Chem 52(12):3784–3791Piñeiro Z, Marrufo-Curtido A, Vela C, Palma M (2017) Microwave-assisted extraction of stilbenes from woody vine material. Food Bioprod Process 103:18–26Pinela J, Prieto M, Carvalho AM, Barreiro MF, Oliveira MBP, Barros L, Ferreira IC (2016) Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: a nutraceutical-oriented optimization study. Sep Purif Technol 164:114–124Rosa R, Tassi L, Orteca G, Saladini M, Villa C, Veronesi P, Leonelli C, Ferrari E (2017) Process intensification by experimental design application to microwave-assisted extraction of phenolic compounds from Juglans regia L. Food Anal Methods 10(3):575–586Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-Gil MG, Martins AI, Sepúlveda C, Almeida J, Meireles M, Gírio FM (2013a) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: effect on the phenolic profile and antiproliferative activity. Ind Crop Prod 47:132–138Roseiro LB, Tavares CS, Roseiro JC, Rauter AP (2013b) Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind Crop Prod 44:119–126Sęczyk Ł, Świeca M, Gawlik-Dziki U (2016) Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem 194:637–642Song J, Li D, Liu C, Zhang Y (2011) Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innovative Food Sci Emerg Technol 12(3):282–287Spigno G, Tramelli L, De Faveri DM (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 81(1):200–208Stavrou IJ, Christou A, Kapnissi-Christodoulou CP (2018) Polyphenols in carobs: a review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food ChemTănase EE, Popa VI, Popa ME, Râpă M, Popa O (2016) Biodegradation study of some food packaging biopolymers based on PVA. Bulletin UASVM Animal Science and Biotechnologies 73:1Tang X, Kumar P, Alavi S, Sandeep K (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442Tóth ME, Vígh L, Sántha M (2014) Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 19(3):299–309Turhan I, Tetik N, Aksu M, Karhan M, Certel M (2006) Liquid–solid extraction of soluble solids and total phenolic compounds of carob bean (Ceratonia siliqua L.). J Food Process Eng 29(5):498–507Uysal S, Zengin G, Aktumsek A, Karatas S (2016) Chemical and biological approaches on nine fruit tree leaves collected from the Mediterranean region of Turkey. J Funct Foods 22:518–532Valdés A, Vidal L, Beltrán A, Canals A, Garrigós MC (2015) Microwave-assisted extraction of phenolic compounds from almond skin byproducts (prunus amygdalus): a multivariate analysis approach. J Agric Food Chem 63(22):5395–5402Vourdoubas J, Skoulou VK (2017) Possibilities of upgrading solid underutilized lingo-cellulosic feedstock (carob pods) to liquid bio-fuel: bio-ethanol production and electricity generation in fuel cells-a critical appraisal of the required processes. Studies in Engineering and Technology 4(1):25–34Yang Z, Zhai W (2010) Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innovative Food Sci Emerg Technol 11(3):470–476Zhao C-N, Zhang J-J, Li Y, Meng X, Li H-B (2018) Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: optimization and identification. Molecules 23(10):249

    Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch

    Full text link
    [EN] The present study describes the preparation and characterization of binary and ternary blends based on polylactide (PLA) with poly("-caprolactone) (PCL) and thermoplastic starch (TPS) to develop fully compostable plastics with improved ductility and toughness. To this end, PLA was first melt-mixed in a co rotating twin-screw extruder with up to 40 wt % of different PCL and TPS combinations and then shaped into pieces by injection molding. The mechanical, thermal, and thermomechanical properties of the resultant binary and ternary blend pieces were analyzed and related to their composition. Although the biopolymer blends were immiscible, the addition of both PCL and TPS remarkably increased the flexibility and impact strength of PLA while it slightly reduced its mechanical strength. The most balanced mechanical performance was achieved for the ternary blend pieces that combined high PCL contents with low amounts of TPS, suggesting a main phase change from PLA/TPS (comparatively rigid) to PLA/PCL (comparatively flexible). The PLA-based blends presented an ¿island-and-sea¿ morphology in which the TPS phase contributed to the fine dispersion of PCL as micro-sized spherical domains that acted as a rubber-like phase with the capacity to improve toughness. In addition, the here-prepared ternary blend pieces presented slightly higher thermal stability and lower thermomechanical stiffness than the neat PLA pieces. Finally, all biopolymer pieces fully disintegrated in a controlled compost soil after 28 days. Therefore, the inherently low ductility and toughness of PLA can be successfully improved by melt blending with PCL and TPS, resulting in compostable plastic materials with a great potential in, for instance, rigid packaging applications.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R, and by the EU H2020 project YPACK (reference number 773872).Quiles-Carrillo, L.; Montanes, N.; Pineiro, F.; Jorda-Vilaplana, A.; Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch. Materials. 11(11):1-20. https://doi.org/10.3390/ma11112138S1201111Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115-2126. doi:10.1098/rstb.2008.0311Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092Kumar, N., & Das, D. (2017). Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Composites Part B: Engineering, 130, 54-63. doi:10.1016/j.compositesb.2017.07.059Garcés, J. M., Moll, D. J., Bicerano, J., Fibiger, R., & McLeod, D. G. (2000). Polymeric Nanocomposites for Automotive Applications. Advanced Materials, 12(23), 1835-1839. doi:10.1002/1521-4095(200012)12:233.0.co;2-tLasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. doi:10.1016/j.biotechadv.2011.06.019Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952Kakroodi, A. R., Kazemi, Y., Nofar, M., & Park, C. B. (2017). Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 308, 772-782. doi:10.1016/j.cej.2016.09.130Kao, C.-T., Lin, C.-C., Chen, Y.-W., Yeh, C.-H., Fang, H.-Y., & Shie, M.-Y. (2015). Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Materials Science and Engineering: C, 56, 165-173. doi:10.1016/j.msec.2015.06.028Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials & Interfaces, 9(4), 4015-4023. doi:10.1021/acsami.6b11793Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Mooney, D. J., Breuer, C., McNamara, K., Vacanti, J. P., & Langer, R. (1995). Fabricating Tubular Devices from Polymers of Lactic and Glycolic Acid for Tissue Engineering. Tissue Engineering, 1(2), 107-118. doi:10.1089/ten.1995.1.107Elsawy, M. A., Kim, K.-H., Park, J.-W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. doi:10.1016/j.rser.2017.05.143Pluta, M., & Piorkowska, E. (2015). Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 46, 79-87. doi:10.1016/j.polymertesting.2015.06.014Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077Darie-Niţă, R. N., Vasile, C., Irimia, A., Lipşa, R., & Râpă, M. (2015). Evaluation of some eco-friendly plasticizers for PLA films processing. Journal of Applied Polymer Science, 133(13), n/a-n/a. doi:10.1002/app.43223Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Gerard, T., & Budtova, T. (2012). Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. European Polymer Journal, 48(6), 1110-1117. doi:10.1016/j.eurpolymj.2012.03.015Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002Gug, J.-I., Tan, B., Soule, J., Downie, M., Barrington, J., & Sobkowicz, M. J. (2017). Analysis of Models Predicting Morphology Transitions in Reactive Twin-Screw Extrusion of Bio-Based Polyester/Polyamide Blends. International Polymer Processing, 32(3), 363-377. doi:10.3139/217.3351Stoclet, G., Seguela, R., & Lefebvre, J.-M. (2011). Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 52(6), 1417-1425. doi:10.1016/j.polymer.2011.02.002Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028Wu, N., & Zhang, H. (2017). Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Materials Letters, 192, 17-20. doi:10.1016/j.matlet.2017.01.063Sarazin, P., Li, G., Orts, W. J., & Favis, B. D. (2008). Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer, 49(2), 599-609. doi:10.1016/j.polymer.2007.11.029Valerio, O., Misra, M., & Mohanty, A. K. (2018). Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polymer Testing, 65, 420-428. doi:10.1016/j.polymertesting.2017.12.018Ostafinska, A., Fortelný, I., Hodan, J., Krejčíková, S., Nevoralová, M., Kredatusová, J., … Šlouf, M. (2017). Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the Mechanical Behavior of Biomedical Materials, 69, 229-241. doi:10.1016/j.jmbbm.2017.01.015Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579Liu, H., Song, W., Chen, F., Guo, L., & Zhang, J. (2011). Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA) Ternary Blends. Macromolecules, 44(6), 1513-1522. doi:10.1021/ma1026934Wokadala, O. C., Ray, S. S., Bandyopadhyay, J., Wesley-Smith, J., & Emmambux, N. M. (2015). Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: The role of nanoclay hydrophobicity. Polymer, 71, 82-92. doi:10.1016/j.polymer.2015.06.058Zolali, A. M., & Favis, B. D. (2017). Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement. Soft Matter, 13(15), 2844-2856. doi:10.1039/c6sm02386jMatzinos, P., Tserki, V., Kontoyiannis, A., & Panayiotou, C. (2002). Processing and characterization of starch/polycaprolactone products. Polymer Degradation and Stability, 77(1), 17-24. doi:10.1016/s0141-3910(02)00072-1Maglio, G., Malinconico, M., Migliozzi, A., & Groeninckx, G. (2004). Immiscible Poly(L-lactide)/Poly(ɛ-caprolactone) Blends: Influence of the Addition of a Poly(L-lactide)-Poly(oxyethylene) Block Copolymer on Thermal Behavior and Morphology. Macromolecular Chemistry and Physics, 205(7), 946-950. doi:10.1002/macp.200300150Forssell, P., Mikkilä, J., Suortti, T., Seppälä, J., & Poutanen, K. (1996). Plasticization of Barley Starch with Glycerol and Water. Journal of Macromolecular Science, Part A, 33(5), 703-715. doi:10.1080/10601329608010888Raquez, J.-M., Nabar, Y., Srinivasan, M., Shin, B.-Y., Narayan, R., & Dubois, P. (2008). Maleated thermoplastic starch by reactive extrusion. Carbohydrate Polymers, 74(2), 159-169. doi:10.1016/j.carbpol.2008.01.027Averous, L. (2000). Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167. doi:10.1016/s0032-3861(99)00636-9Odelius, K., Ohlson, M., Höglund, A., & Albertsson, A. (2012). Polyesters with small structural variations improve the mechanical properties of polylactide. Journal of Applied Polymer Science, 127(1), 27-33. doi:10.1002/app.36842Zhen, Z., Ying, S., Hongye, F., Jie, R., & Tianbin, R. (2011). Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(Lactic Acid) and Poly(Butylene Succinate). Polymers from Renewable Resources, 2(2), 49-62. doi:10.1177/204124791100200201Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:10.1016/j.carbpol.2009.01.024Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082García-Campo, M., Boronat, T., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2017). Manufacturing and Characterization of Toughened Poly(lactic acid) (PLA) Formulations by Ternary Blends with Biopolyesters. Polymers, 10(1), 3. doi:10.3390/polym10010003Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Tang, L., Wang, L., Chen, P., Fu, J., Xiao, P., Ye, N., & Zhang, M. (2017). Toughness of ABS/PBT blends: The relationship between composition, morphology, and fracture behavior. Journal of Applied Polymer Science, 135(13), 46051. doi:10.1002/app.46051Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726Carmona, V. B., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2014). Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). Journal of Polymers and the Environment, 23(1), 83-89. doi:10.1007/s10924-014-0666-7Kim, H.-Y., Park, S. S., & Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607-620. doi:10.1016/j.colsurfb.2014.11.011Bordes, C., Fréville, V., Ruffin, E., Marote, P., Gauvrit, J. Y., Briançon, S., & Lantéri, P. (2010). Determination of poly(ɛ-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. International Journal of Pharmaceutics, 383(1-2), 236-243. doi:10.1016/j.ijpharm.2009.09.023Small, P. A. (2007). Some factors affecting the solubility of polymers. Journal of Applied Chemistry, 3(2), 71-80. doi:10.1002/jctb.5010030205Navarro-Baena, I., Sessini, V., Dominici, F., Torre, L., Kenny, J. M., & Peponi, L. (2016). Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 132, 97-108. doi:10.1016/j.polymdegradstab.2016.03.037Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56(2), 111-122. doi:10.1016/j.carbpol.2003.11.015Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. doi:10.1080/10408398.2011.636156Patrício, T., & Bártolo, P. (2013). Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process. Procedia Engineering, 59, 292-297. doi:10.1016/j.proeng.2013.05.124Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polymer Testing, 45, 93-100. doi:10.1016/j.polymertesting.2015.05.007Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Martin, O., & Avérous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332Di Franco, C. R., Cyras, V. P., Busalmen, J. P., Ruseckaite, R. A., & Vázquez, A. (2004). Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer Degradation and Stability, 86(1), 95-103. doi:10.1016/j.polymdegradstab.2004.02.009Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147-157. doi:10.1016/j.polymdegradstab.2007.10.011Thakore, I. ., Desai, S., Sarawade, B. ., & Devi, S. (2001). Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. European Polymer Journal, 37(1), 151-160. doi:10.1016/s0014-3057(00)00086-0Sikorska, W., Musiol, M., Nowak, B., Pajak, J., Labuzek, S., Kowalczuk, M., & Adamus, G. (2015). Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. International Biodeterioration & Biodegradation, 101, 32-41. doi:10.1016/j.ibiod.2015.03.02

    Innovative solutions and challenges to increase the use of poly(3-hydroxybutyrate) in food packaging and disposables

    Full text link
    [EN] Poly(3-hydroxybutyrate) (PHB) has gain in recent years a huge interest in the food packaging field due to its renewable origin from waste as well as non-food crops, high mechanical strength, medium-to-high barrier performance, and inherent biodegradability in natural environments. Despite these advantages, PHB also shows a narrow processing window and high brittleness since this homopolyester shows low thermal stability and high crystallinity, limiting its industrial application. The present review provides an updated state of the art of the most relevant aspects in terms of processing and properties of PHB materials with a particular emphasis for their use in sustainable food packaging. It also describes the most potential strategies that can be applied to improve both the processability and mechanical properties of PHB, including the melt blending with green plasticizers and flexible biodegradable polymers as well as the development of more ductile co-polyesters. Finally, the waste management of the newly developed PHB-based articles is discussed, from their potential compostability to develop more biopolymers to more economically favored alternatives such as mechanical and chemical recycling technologies.This work was funded by the Spanish Ministry of Science and Innovation (MICINN, Spain), grant PID2021-123753NA-C32 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", by the "European Union"; Comunidad de Madrid (Spain) by CIRCULAGROPLAST, a research Project that has been funded by the Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Politécnica de Madrid; as well as by the Generalitat Valenciana (Spain) through the BEST Program (CIBEST/2021/94). S. Torres-Giner acknowledges the Spanish Ministry of Science and Innovation (MICINN, Spain) for his Ramón y Cajal contract (RYC2019-027784-I).Garcia-Garcia, D.; Quiles-Carrillo, L.; Balart, R.; Torres-Giner, S.; Arrieta, MP. (2022). Innovative solutions and challenges to increase the use of poly(3-hydroxybutyrate) in food packaging and disposables. European Polymer Journal. 178:1-20. https://doi.org/10.1016/j.eurpolymj.2022.11150512017

    The impact of electrospun films of poly(epsilon-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A

    Full text link
    [EN] This research study originally reports the preparation and characterization of electrospun films based on poly(epsilon-caprolactone) (PCL) with high histamine-binding capacity. To this end, submicron PCL fibers filled with nanostructured zeolite or silica (SiO2) microparticles in the 5-20 wt% range were first prepared by solution electrospinning. The resultant electrospun composite fiber mats were thereafter thermally post-treated at 55 degrees C to successfully develop contact-transparent films with reduced porosity and improved mechanical strength. The capacity of the developed composite films to entrap histamine was evaluated in vitro by the culture media method using Staphylococcus aureus (S. aureus) and Salmonella Paratyphi A (S. Paratyphi A) foodborne bacteria. Both electrospun zeolite- and SiO2-containing PCL films exhibited high histamine-binding capacity, being more effective for S. aureus. The histamine entrapment performance was significantly higher for the PCL films filled with zeolite due to the enhanced porous structure and more optimal adsorption selectivity of this inorganic filler. The here-developed electrospun composite films can be applied as novel active-scavenging packaging materials to entrap heat-stable histamine and other biogenic amines released from fish and fishery products.This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) program number AGL2015-63855-C2-1-R and by the EU H2020 YPACK project (reference number 773872). The authors also thank the Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (TAGEM) and Central Fisheries Research Institute SUMAE) for funding support through the projects TAGEM/HSGYAD/14/A05/P05/70 and TAGEM/HSGYAD/17/A03/P05/133. Figueroa Lopez is a recipient of a Santiago Grisolia (GRISOLIAP/2017/101) grant of the Generalitat Valenciana (GVA) and Torres-Giner is on a Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) from MICIU.Alp-Erbay, E.; Figueroa-López, KJ.; Lagaron, JM.; Çaglak, E.; Torres-Giner, S. (2019). The impact of electrospun films of poly(epsilon-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life. 22:1-13. https://doi.org/10.1016/j.fpsl.2019.100414S11322Alp Erbay, E., Dağtekin, B. B. (Gözü), Türe, M., Yeşilsu, A. F., & Torres-Giner, S. (2017). Quality improvement of rainbow trout fillets by whey protein isolate coatings containing electrospun poly(ε-caprolactone) nanofibers with Urtica dioica L. extract during storage. LWT, 78, 340-351. doi:10.1016/j.lwt.2017.01.002Alp-Erbay, E., Yeşi̇lsu, A. F., & Türe, M. (2019). Fish Gelatin Antimicrobial Electrospun Nanofibers for Active Food-Packaging Applications. Journal of Nano Research, 56, 80-97. doi:10.4028/www.scientific.net/jnanor.56.80Averous, L. (2000). Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167. doi:10.1016/s0032-3861(99)00636-9Beachley, V., & Wen, X. (2009). Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29(3), 663-668. doi:10.1016/j.msec.2008.10.037Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., & Thomas, T. L. (1956). Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A. Journal of the American Chemical Society, 78(23), 5963-5972. doi:10.1021/ja01604a001Chang, S.-C., Kung, H.-F., Chen, H.-C., Lin, C.-S., & Tsai, Y.-H. (2008). Determination of histamine and bacterial isolation in swordfish fillets (Xiphias gladius) implicated in a food borne poisoning. Food Control, 19(1), 16-21. doi:10.1016/j.foodcont.2007.01.005Croisier, F., Duwez, A.-S., Jérôme, C., Léonard, A. F., van der Werf, K. O., Dijkstra, P. J., & Bennink, M. L. (2012). Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 8(1), 218-224. doi:10.1016/j.actbio.2011.08.015Deitzel, J. ., Kleinmeyer, J., Harris, D., & Beck Tan, N. . (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272. doi:10.1016/s0032-3861(00)00250-0Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Forouharshad, M., Saligheh, O., Arasteh, R., & Farsani, R. E. (2010). Manufacture and Characterization of Poly (butylene terephthalate) Nanofibers by Electrospinning. Journal of Macromolecular Science, Part B, 49(4), 833-842. doi:10.1080/00222341003609377GENG, X., KWON, O., & JANG, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. doi:10.1016/j.biomaterials.2005.01.066Geornaras, I., Dykes, G. A., & Holy, A. (1995). Biogenic amine formation by poultry-associated spoilage and pathogenic bacteria. Letters in Applied Microbiology, 21(3), 164-166. doi:10.1111/j.1472-765x.1995.tb01032.xGokdogan, S., Özogul, Y., Kuley, E., Özogul, F., Kacar, C., & Ucar, Y. (2012). The Influences of Natural Zeolite (cliptinolite) on Ammonia and Biogenic Amine Formation by Foodborne Pathogen. Journal of Food Science, 77(8), M452-M457. doi:10.1111/j.1750-3841.2012.02822.xHanim, S. A. M., Malek, N. A. N. N., & Ibrahim, Z. (2016). Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity. Applied Surface Science, 360, 121-130. doi:10.1016/j.apsusc.2015.11.010HERNÁNDEZ-HERRERO, M. M., ROIG-SAGUÉS, A. X., RODRÍGUEZ-JEREZ, J. J., & MORA-VENTURA, M. T. (1999). Halotolerant and Halophilic Histamine-Forming Bacteria Isolated during the Ripening of Salted Anchovies (Engraulis encrasicholus). Journal of Food Protection, 62(5), 509-514. doi:10.4315/0362-028x-62.5.509HIEN, T. T. T., SHIRAI, T., & FUJI, M. (2012). Mechanical modification of silica powders. Journal of the Ceramic Society of Japan, 120(1406), 429-435. doi:10.2109/jcersj2.120.429Hungerford, J. M. (2010). Scombroid poisoning: A review. Toxicon, 56(2), 231-243. doi:10.1016/j.toxicon.2010.02.006Huwig, A., Freimund, S., Käppeli, O., & Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122(2), 179-188. doi:10.1016/s0378-4274(01)00360-5Hwang, S. Y., Yoon, W. J., Yun, S. H., Yoo, E. S., Kim, T. H., & Im, S. S. (2013). Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromolecular Research, 21(11), 1281-1288. doi:10.1007/s13233-013-1178-3Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724-734. doi:10.1016/j.biomaterials.2012.10.026Kickelbick, G. (2003). Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science, 28(1), 83-114. doi:10.1016/s0079-6700(02)00019-9Kim, G. H., Han, H., Park, J. H., & Kim, W. D. (2007). An applicable electrospinning process for fabricating a mechanically improved nanofiber mat. Polymer Engineering & Science, 47(5), 707-712. doi:10.1002/pen.20744Kimura, B. (2001). Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce. International Journal of Food Microbiology, 70(1-2), 71-77. doi:10.1016/s0168-1605(01)00514-1Klausen, N. K., & Huss, H. H. (1987). Growth and histamine production by Morganella morganii under various temperature conditions. International Journal of Food Microbiology, 5(2), 147-156. doi:10.1016/0168-1605(87)90032-8KROKOWICZ, L., TOMCZAK, H., BOBKIEWICZ, A., MACKIEWICZ, J., MARCINIAK, R., DREWS, M., & BANASIEWICZ, T. (2015). In vitro studies of antibacterial and antifungal wound dressings comprising H2TiO3 and SiO2 nanoparticles. Polish Journal of Microbiology, 64(2), 137-142. doi:10.33073/pjm-2015-020Kuley, E., Durmus, M., Balikci, E., Ucar, Y., Regenstein, J. M., & Özoğul, F. (2016). Fish spoilage bacterial growth and their biogenic amine accumulation: Inhibitory effects of olive by-products. International Journal of Food Properties, 20(5), 1029-1043. doi:10.1080/10942912.2016.1193516Kuley, E., & Özogul, F. (2011). Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth. Food Chemistry, 127(3), 1163-1168. doi:10.1016/j.foodchem.2011.01.118Kung, H.-F., Wang, T.-Y., Huang, Y.-R., Lin, C.-S., Wu, W.-S., Lin, C.-M., & Tsai, Y.-H. (2009). Isolation and identification of histamine-forming bacteria in tuna sandwiches. Food Control, 20(11), 1013-1017. doi:10.1016/j.foodcont.2008.12.001Lakshmanan, R., Jeya Shakila, R., & Jeyasekaran, G. (2002). Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiology, 19(6), 617-625. doi:10.1006/fmic.2002.0481Landete, J. M., De Las Rivas, B., Marcobal, A., & Muñoz, R. (2008). Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Critical Reviews in Food Science and Nutrition, 48(8), 697-714. doi:10.1080/10408390701639041Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173Lehane, L., & Olley, J. (2000). Histamine fish poisoning revisited. International Journal of Food Microbiology, 58(1-2), 1-37. doi:10.1016/s0168-1605(00)00296-8Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719Li, M., Li, G., Jiang, J., Tao, Y., & Mai, K. (2013). Preparation, antimicrobial, crystallization and mechanical properties of nano-ZnO-supported zeolite filled polypropylene random copolymer composites. Composites Science and Technology, 81, 30-36. doi:10.1016/j.compscitech.2013.03.020LÓPEZ-SABATER, E. I., RODRÍGUEZ-JEREZ, J. J., ROIG-SAGUÉS, A. X., & TERESA MORA-VENTURA, M. A. (1994). Bacteriological Quality of Tuna Fish (Thunnus thynnus) Destined for Canning: Effect of Tuna Handling on Presence of Histidine Decarboxylase Bacteria and Histamine Level. Journal of Food Protection, 57(4), 318-323. doi:10.4315/0362-028x-57.4.318Mehrasa, M., Anarkoli, A. O., Rafienia, M., Ghasemi, N., Davary, N., Bonakdar, S., … Salamat, M. R. (2016). Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: The influence on the physical, chemical properties and cell behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(9), 457-465. doi:10.1080/00914037.2015.1129958Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227Mohamed, R. M., & Yusoh, K. (2015). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249-255. doi:10.4028/www.scientific.net/amr.1134.249Murray, C. K., Hobbs, G., & Gilbert, R. J. (1982). Scombrotoxin and scombrotoxin-like poisoning from canned fish. Journal of Hygiene, 88(2), 215-220. doi:10.1017/s002217240007008xNaila, A., Flint, S., Fletcher, G., Bremer, P., & Meerdink, G. (2010). Control of Biogenic Amines in Food-Existing and Emerging Approaches. Journal of Food Science, 75(7), R139-R150. doi:10.1111/j.1750-3841.2010.01774.xNei, D. (2014). Evaluation of Non-bacterial factors contributing to histamine accumulation in fish fillets. Food Control, 35(1), 142-145. doi:10.1016/j.foodcont.2013.06.037Özogul, F., Kacar, Ç., & Hamed, I. (2015). Inhibition effects of carvacrol on biogenic amines formation by common food-borne pathogens in histidine decarboxylase broth. LWT - Food Science and Technology, 64(1), 50-55. doi:10.1016/j.lwt.2015.05.027Pardo-Figuerez, M., López-Córdoba, A., Torres-Giner, S., & Lagaron, J. (2018). Superhydrophobic Bio-Coating Made by Co-Continuous Electrospinning and Electrospraying on Polyethylene Terephthalate Films Proposed as Easy Emptying Transparent Food Packaging. Coatings, 8(10), 364. doi:10.3390/coatings8100364Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533Sánchez-Clemente, R., Igeño, M. I., Población, A. G., Guijo, M. I., Merchán, F., & Blasco, R. (2018). Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proceedings, 2(20), 1297. doi:10.3390/proceedings2201297Satomi, M. (2016). Effect of Histamine-producing Bacteria on Fermented Fishery Products. Food Science and Technology Research, 22(1), 1-21. doi:10.3136/fstr.22.1Shahabadi, S. M. S., Kheradmand, A., Montazeri, V., & Ziaee, H. (2015). Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polymer Science Series A, 57(2), 155-167. doi:10.1134/s0965545x15020157Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Research International, 29(7), 675-690. doi:10.1016/s0963-9969(96)00066-xAnalysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica. (2007). Bulletin of the Korean Chemical Society, 28(11), 1985-1992. doi:10.5012/bkcs.2007.28.11.1985Simon, S. S., & Sanjeev, S. (2007). Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control, 18(12), 1565-1568. doi:10.1016/j.foodcont.2006.12.007Sridhar, R., Ravanan, S., Venugopal, J. R., Sundarrajan, S., Pliszka, D., Sivasubramanian, S., … Ramakrishna, S. (2014). Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer:in vitroefficacy evaluation. Journal of Biomaterials Science, Polymer Edition, 25(10), 985-998. doi:10.1080/09205063.2014.917039STRATTON, J. E., HUTKINS, R. W., & TAYLOR, S. L. (1991). Biogenic Amines in Cheese and other Fermented Foods: A Review. Journal of Food Protection, 54(6), 460-470. doi:10.4315/0362-028x-54.6.460Tapingkae, W., Parkin, K. L., Tanasupawat, S., Kruenate, J., Benjakul, S., & Visessanguan, W. (2010). Whole cell immobilisation of Natrinema gari BCC 24369 for histamine degradation. Food Chemistry, 120(3), 842-849. doi:10.1016/j.foodchem.2009.11.025Tarus, B., Fadel, N., Al-Oufy, A., & El-Messiry, M. (2016). Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Engineering Journal, 55(3), 2975-2984. doi:10.1016/j.aej.2016.04.025Torres-Giner, S., Echegoyen, Y., Teruel-Juanes, R., Badia, J., Ribes-Greus, A., & Lagaron, J. (2018). Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications. Nanomaterials, 8(10), 745. doi:10.3390/nano8100745Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11-24. doi:10.1016/j.cej.2009.10.029Wang, X., Zhao, H., Turng, L.-S., & Li, Q. (2013). Crystalline Morphology of Electrospun Poly(ε-caprolactone) (PCL) Nanofibers. Industrial & Engineering Chemistry Research, 52(13), 4939-4949. doi:10.1021/ie302185eWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Yantasee, W., Rutledge, R. D., Chouyyok, W., Sukwarotwat, V., Orr, G., Warner, C. L., … Addleman, R. S. (2010). Functionalized Nanoporous Silica for the Removal of Heavy Metals from Biological Systems: Adsorption and Application. ACS Applied Materials & Interfaces, 2(10), 2749-2758. doi:10.1021/am100616bYao, G., Lei, J., Zhang, W., Yu, C., Sun, Z., Zheng, S., & Komarneni, S. (2018). Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environmental Science and Pollution Research, 26(3), 2782-2793. doi:10.1007/s11356-018-3750-zYuzay, I. E., Auras, R., Soto-Valdez, H., & Selke, S. (2010). Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability, 95(9), 1769-1777. doi:10.1016/j.polymdegradstab.2010.05.011Zarei, M., Maktabi, S., & Ghorbanpour, M. (2012). Prevalence of Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. in Seafood Products Using Multiplex Polymerase Chain Reaction. Foodborne Pathogens and Disease, 9(2), 108-112. doi:10.1089/fpd.2011.098

    Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil

    Full text link
    [EN] The present study describes the effect of maleinized hemp seed oil (MHO) on the physical performance of polylactide (PLA) pieces. To this end, PLA pieces with varying MHO contents in the 0¿10 wt% range were manufactured by twin-screw extrusion (TSE) followed by injection molding. The resultant pieces were characterized in terms of their mechanical, thermal, and thermomechanical properties. The obtained properties suggested that, unlike typical plasticizers, MHO does not only induce an increment in elongation at break and impact resistance but it also enhances both elastic modulus and tensile strength. In addition, a moderate decrease in the glass transition temperature (Tg) was observed. This was ascribed to simultaneous linear chain-extension, branching, and/or cross-linking phenomena due to the reaction of the multiple maleic anhydride (MAH) groups present in MHO with the terminal hydroxyl groups of the PLA chains. Furthermore, morphology characterization revealed that, though certain phase separation occurred at its highest content, MHO was finely dispersed as submicron droplets within the PLA matrix contributing to improving toughness. The use of multi-functionalized reactive vegetable oils thus represents a highly sustainable solution to reduce the intrinsic brittleness of PLA materials without compromising their mechanical resistance and the toughened biopolymer pieces described herein can find interesting applications in, for instance, rigid packaging.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) (projects MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R.). L. Quiles-Carrillo acknowledges Generalitat Valenciana (GV) for financial support through a FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812).Quiles-Carrillo, L.; Blanes-Martínez, M.; Montanes, N.; Fenollar, O.; Torres-Giner, S.; Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal. 98:402-410. https://doi.org/10.1016/j.eurpolymj.2017.11.039S4024109

    A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum

    Full text link
    [EN] This research work describes the manufacturing and characterization of novel engineering materials consisted of fully bio-based blends of polyamide 1010 (PA1010) with 20 wt% of polylactide (PLA). Four different compatibilizers were used to enhance the miscibility and the performance of the biopolymer blends. Two multi-functionalized vegetable oils (maleinized linseed oil (MLO) and epoxidized linseed oil (ELO)) and two petroleum-derived glycidyl-based additives (epoxy styrene-acrylic oligomer (ESAO) and styrene-glycidyl methacrylate copolymer (PS-GMA)) were tested during melt compounding. The resultant biopolymer blends were processed by either cast film extrusion or injection molding to obtain films and pieces, respectively. Thin films with an average thickness of 50¿60 µm and thick pieces of 4 mm were obtained, and their mechanical, morphological, thermal, thermomechanical, barrier and, optical properties were characterized. Although all four compatibilizers successfully provided compatibilization to the blends, the chemically modified vegetable oils, that is, MLO and ELO yielded the injection-molded pieces with the most balanced mechanical properties in terms of strength and toughness. Besides, the resultant films showed very low oxygen transmission rate values, thus broadening the potential of these biopolymer blends for the food packaging industryThis research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. Quiles-Carrillo and Torres-Giner are recipients of a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD) and a Juan de la Cierva contract (IJCI-2016-29675) from MICIU, respectively. Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images. Authors thank Polyscope for kindly supplying XibondTM 920 for this study.Quiles-Carrillo, L.; Fenollar, O.; Balart, R.; Torres-Giner, S.; Rallini, M.; Dominici, F.; Torre, L. (2020). A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum. eXPRESS Polymer Letters. 14(6):583-604. https://doi.org/10.3144/expresspolymlett.2020.48S58360414
    corecore