The impact of electrospun films of poly(epsilon-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A

Abstract

[EN] This research study originally reports the preparation and characterization of electrospun films based on poly(epsilon-caprolactone) (PCL) with high histamine-binding capacity. To this end, submicron PCL fibers filled with nanostructured zeolite or silica (SiO2) microparticles in the 5-20 wt% range were first prepared by solution electrospinning. The resultant electrospun composite fiber mats were thereafter thermally post-treated at 55 degrees C to successfully develop contact-transparent films with reduced porosity and improved mechanical strength. The capacity of the developed composite films to entrap histamine was evaluated in vitro by the culture media method using Staphylococcus aureus (S. aureus) and Salmonella Paratyphi A (S. Paratyphi A) foodborne bacteria. Both electrospun zeolite- and SiO2-containing PCL films exhibited high histamine-binding capacity, being more effective for S. aureus. The histamine entrapment performance was significantly higher for the PCL films filled with zeolite due to the enhanced porous structure and more optimal adsorption selectivity of this inorganic filler. The here-developed electrospun composite films can be applied as novel active-scavenging packaging materials to entrap heat-stable histamine and other biogenic amines released from fish and fishery products.This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) program number AGL2015-63855-C2-1-R and by the EU H2020 YPACK project (reference number 773872). The authors also thank the Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (TAGEM) and Central Fisheries Research Institute SUMAE) for funding support through the projects TAGEM/HSGYAD/14/A05/P05/70 and TAGEM/HSGYAD/17/A03/P05/133. Figueroa Lopez is a recipient of a Santiago Grisolia (GRISOLIAP/2017/101) grant of the Generalitat Valenciana (GVA) and Torres-Giner is on a Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) from MICIU.Alp-Erbay, E.; Figueroa-López, KJ.; Lagaron, JM.; Çaglak, E.; Torres-Giner, S. (2019). The impact of electrospun films of poly(epsilon-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life. 22:1-13. https://doi.org/10.1016/j.fpsl.2019.100414S11322Alp Erbay, E., Dağtekin, B. B. (Gözü), Türe, M., Yeşilsu, A. F., & Torres-Giner, S. (2017). Quality improvement of rainbow trout fillets by whey protein isolate coatings containing electrospun poly(ε-caprolactone) nanofibers with Urtica dioica L. extract during storage. LWT, 78, 340-351. doi:10.1016/j.lwt.2017.01.002Alp-Erbay, E., Yeşi̇lsu, A. F., & Türe, M. (2019). Fish Gelatin Antimicrobial Electrospun Nanofibers for Active Food-Packaging Applications. Journal of Nano Research, 56, 80-97. doi:10.4028/www.scientific.net/jnanor.56.80Averous, L. (2000). Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167. doi:10.1016/s0032-3861(99)00636-9Beachley, V., & Wen, X. (2009). Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29(3), 663-668. doi:10.1016/j.msec.2008.10.037Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., & Thomas, T. L. (1956). Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A. Journal of the American Chemical Society, 78(23), 5963-5972. doi:10.1021/ja01604a001Chang, S.-C., Kung, H.-F., Chen, H.-C., Lin, C.-S., & Tsai, Y.-H. (2008). Determination of histamine and bacterial isolation in swordfish fillets (Xiphias gladius) implicated in a food borne poisoning. Food Control, 19(1), 16-21. doi:10.1016/j.foodcont.2007.01.005Croisier, F., Duwez, A.-S., Jérôme, C., Léonard, A. F., van der Werf, K. O., Dijkstra, P. J., & Bennink, M. L. (2012). Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 8(1), 218-224. doi:10.1016/j.actbio.2011.08.015Deitzel, J. ., Kleinmeyer, J., Harris, D., & Beck Tan, N. . (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272. doi:10.1016/s0032-3861(00)00250-0Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Forouharshad, M., Saligheh, O., Arasteh, R., & Farsani, R. E. (2010). Manufacture and Characterization of Poly (butylene terephthalate) Nanofibers by Electrospinning. Journal of Macromolecular Science, Part B, 49(4), 833-842. doi:10.1080/00222341003609377GENG, X., KWON, O., & JANG, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. doi:10.1016/j.biomaterials.2005.01.066Geornaras, I., Dykes, G. A., & Holy, A. (1995). Biogenic amine formation by poultry-associated spoilage and pathogenic bacteria. Letters in Applied Microbiology, 21(3), 164-166. doi:10.1111/j.1472-765x.1995.tb01032.xGokdogan, S., Özogul, Y., Kuley, E., Özogul, F., Kacar, C., & Ucar, Y. (2012). The Influences of Natural Zeolite (cliptinolite) on Ammonia and Biogenic Amine Formation by Foodborne Pathogen. Journal of Food Science, 77(8), M452-M457. doi:10.1111/j.1750-3841.2012.02822.xHanim, S. A. M., Malek, N. A. N. N., & Ibrahim, Z. (2016). Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity. Applied Surface Science, 360, 121-130. doi:10.1016/j.apsusc.2015.11.010HERNÁNDEZ-HERRERO, M. M., ROIG-SAGUÉS, A. X., RODRÍGUEZ-JEREZ, J. J., & MORA-VENTURA, M. T. (1999). Halotolerant and Halophilic Histamine-Forming Bacteria Isolated during the Ripening of Salted Anchovies (Engraulis encrasicholus). Journal of Food Protection, 62(5), 509-514. doi:10.4315/0362-028x-62.5.509HIEN, T. T. T., SHIRAI, T., & FUJI, M. (2012). Mechanical modification of silica powders. Journal of the Ceramic Society of Japan, 120(1406), 429-435. doi:10.2109/jcersj2.120.429Hungerford, J. M. (2010). Scombroid poisoning: A review. Toxicon, 56(2), 231-243. doi:10.1016/j.toxicon.2010.02.006Huwig, A., Freimund, S., Käppeli, O., & Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122(2), 179-188. doi:10.1016/s0378-4274(01)00360-5Hwang, S. Y., Yoon, W. J., Yun, S. H., Yoo, E. S., Kim, T. H., & Im, S. S. (2013). Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromolecular Research, 21(11), 1281-1288. doi:10.1007/s13233-013-1178-3Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724-734. doi:10.1016/j.biomaterials.2012.10.026Kickelbick, G. (2003). Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science, 28(1), 83-114. doi:10.1016/s0079-6700(02)00019-9Kim, G. H., Han, H., Park, J. H., & Kim, W. D. (2007). An applicable electrospinning process for fabricating a mechanically improved nanofiber mat. Polymer Engineering & Science, 47(5), 707-712. doi:10.1002/pen.20744Kimura, B. (2001). Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce. International Journal of Food Microbiology, 70(1-2), 71-77. doi:10.1016/s0168-1605(01)00514-1Klausen, N. K., & Huss, H. H. (1987). Growth and histamine production by Morganella morganii under various temperature conditions. International Journal of Food Microbiology, 5(2), 147-156. doi:10.1016/0168-1605(87)90032-8KROKOWICZ, L., TOMCZAK, H., BOBKIEWICZ, A., MACKIEWICZ, J., MARCINIAK, R., DREWS, M., & BANASIEWICZ, T. (2015). In vitro studies of antibacterial and antifungal wound dressings comprising H2TiO3 and SiO2 nanoparticles. Polish Journal of Microbiology, 64(2), 137-142. doi:10.33073/pjm-2015-020Kuley, E., Durmus, M., Balikci, E., Ucar, Y., Regenstein, J. M., & Özoğul, F. (2016). Fish spoilage bacterial growth and their biogenic amine accumulation: Inhibitory effects of olive by-products. International Journal of Food Properties, 20(5), 1029-1043. doi:10.1080/10942912.2016.1193516Kuley, E., & Özogul, F. (2011). Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth. Food Chemistry, 127(3), 1163-1168. doi:10.1016/j.foodchem.2011.01.118Kung, H.-F., Wang, T.-Y., Huang, Y.-R., Lin, C.-S., Wu, W.-S., Lin, C.-M., & Tsai, Y.-H. (2009). Isolation and identification of histamine-forming bacteria in tuna sandwiches. Food Control, 20(11), 1013-1017. doi:10.1016/j.foodcont.2008.12.001Lakshmanan, R., Jeya Shakila, R., & Jeyasekaran, G. (2002). Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiology, 19(6), 617-625. doi:10.1006/fmic.2002.0481Landete, J. M., De Las Rivas, B., Marcobal, A., & Muñoz, R. (2008). Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Critical Reviews in Food Science and Nutrition, 48(8), 697-714. doi:10.1080/10408390701639041Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173Lehane, L., & Olley, J. (2000). Histamine fish poisoning revisited. International Journal of Food Microbiology, 58(1-2), 1-37. doi:10.1016/s0168-1605(00)00296-8Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719Li, M., Li, G., Jiang, J., Tao, Y., & Mai, K. (2013). Preparation, antimicrobial, crystallization and mechanical properties of nano-ZnO-supported zeolite filled polypropylene random copolymer composites. Composites Science and Technology, 81, 30-36. doi:10.1016/j.compscitech.2013.03.020LÓPEZ-SABATER, E. I., RODRÍGUEZ-JEREZ, J. J., ROIG-SAGUÉS, A. X., & TERESA MORA-VENTURA, M. A. (1994). Bacteriological Quality of Tuna Fish (Thunnus thynnus) Destined for Canning: Effect of Tuna Handling on Presence of Histidine Decarboxylase Bacteria and Histamine Level. Journal of Food Protection, 57(4), 318-323. doi:10.4315/0362-028x-57.4.318Mehrasa, M., Anarkoli, A. O., Rafienia, M., Ghasemi, N., Davary, N., Bonakdar, S., … Salamat, M. R. (2016). Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: The influence on the physical, chemical properties and cell behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(9), 457-465. doi:10.1080/00914037.2015.1129958Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227Mohamed, R. M., & Yusoh, K. (2015). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249-255. doi:10.4028/www.scientific.net/amr.1134.249Murray, C. K., Hobbs, G., & Gilbert, R. J. (1982). Scombrotoxin and scombrotoxin-like poisoning from canned fish. Journal of Hygiene, 88(2), 215-220. doi:10.1017/s002217240007008xNaila, A., Flint, S., Fletcher, G., Bremer, P., & Meerdink, G. (2010). Control of Biogenic Amines in Food-Existing and Emerging Approaches. Journal of Food Science, 75(7), R139-R150. doi:10.1111/j.1750-3841.2010.01774.xNei, D. (2014). Evaluation of Non-bacterial factors contributing to histamine accumulation in fish fillets. Food Control, 35(1), 142-145. doi:10.1016/j.foodcont.2013.06.037Özogul, F., Kacar, Ç., & Hamed, I. (2015). Inhibition effects of carvacrol on biogenic amines formation by common food-borne pathogens in histidine decarboxylase broth. LWT - Food Science and Technology, 64(1), 50-55. doi:10.1016/j.lwt.2015.05.027Pardo-Figuerez, M., López-Córdoba, A., Torres-Giner, S., & Lagaron, J. (2018). Superhydrophobic Bio-Coating Made by Co-Continuous Electrospinning and Electrospraying on Polyethylene Terephthalate Films Proposed as Easy Emptying Transparent Food Packaging. Coatings, 8(10), 364. doi:10.3390/coatings8100364Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533Sánchez-Clemente, R., Igeño, M. I., Población, A. G., Guijo, M. I., Merchán, F., & Blasco, R. (2018). Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proceedings, 2(20), 1297. doi:10.3390/proceedings2201297Satomi, M. (2016). Effect of Histamine-producing Bacteria on Fermented Fishery Products. Food Science and Technology Research, 22(1), 1-21. doi:10.3136/fstr.22.1Shahabadi, S. M. S., Kheradmand, A., Montazeri, V., & Ziaee, H. (2015). Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polymer Science Series A, 57(2), 155-167. doi:10.1134/s0965545x15020157Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Research International, 29(7), 675-690. doi:10.1016/s0963-9969(96)00066-xAnalysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica. (2007). Bulletin of the Korean Chemical Society, 28(11), 1985-1992. doi:10.5012/bkcs.2007.28.11.1985Simon, S. S., & Sanjeev, S. (2007). Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control, 18(12), 1565-1568. doi:10.1016/j.foodcont.2006.12.007Sridhar, R., Ravanan, S., Venugopal, J. R., Sundarrajan, S., Pliszka, D., Sivasubramanian, S., … Ramakrishna, S. (2014). Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer:in vitroefficacy evaluation. Journal of Biomaterials Science, Polymer Edition, 25(10), 985-998. doi:10.1080/09205063.2014.917039STRATTON, J. E., HUTKINS, R. W., & TAYLOR, S. L. (1991). Biogenic Amines in Cheese and other Fermented Foods: A Review. Journal of Food Protection, 54(6), 460-470. doi:10.4315/0362-028x-54.6.460Tapingkae, W., Parkin, K. L., Tanasupawat, S., Kruenate, J., Benjakul, S., & Visessanguan, W. (2010). Whole cell immobilisation of Natrinema gari BCC 24369 for histamine degradation. Food Chemistry, 120(3), 842-849. doi:10.1016/j.foodchem.2009.11.025Tarus, B., Fadel, N., Al-Oufy, A., & El-Messiry, M. (2016). Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Engineering Journal, 55(3), 2975-2984. doi:10.1016/j.aej.2016.04.025Torres-Giner, S., Echegoyen, Y., Teruel-Juanes, R., Badia, J., Ribes-Greus, A., & Lagaron, J. (2018). Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications. Nanomaterials, 8(10), 745. doi:10.3390/nano8100745Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11-24. doi:10.1016/j.cej.2009.10.029Wang, X., Zhao, H., Turng, L.-S., & Li, Q. (2013). Crystalline Morphology of Electrospun Poly(ε-caprolactone) (PCL) Nanofibers. Industrial & Engineering Chemistry Research, 52(13), 4939-4949. doi:10.1021/ie302185eWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Yantasee, W., Rutledge, R. D., Chouyyok, W., Sukwarotwat, V., Orr, G., Warner, C. L., … Addleman, R. S. (2010). Functionalized Nanoporous Silica for the Removal of Heavy Metals from Biological Systems: Adsorption and Application. ACS Applied Materials & Interfaces, 2(10), 2749-2758. doi:10.1021/am100616bYao, G., Lei, J., Zhang, W., Yu, C., Sun, Z., Zheng, S., & Komarneni, S. (2018). Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environmental Science and Pollution Research, 26(3), 2782-2793. doi:10.1007/s11356-018-3750-zYuzay, I. E., Auras, R., Soto-Valdez, H., & Selke, S. (2010). Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability, 95(9), 1769-1777. doi:10.1016/j.polymdegradstab.2010.05.011Zarei, M., Maktabi, S., & Ghorbanpour, M. (2012). Prevalence of Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. in Seafood Products Using Multiplex Polymerase Chain Reaction. Foodborne Pathogens and Disease, 9(2), 108-112. doi:10.1089/fpd.2011.098

    Similar works