Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch

Abstract

[EN] The present study describes the preparation and characterization of binary and ternary blends based on polylactide (PLA) with poly("-caprolactone) (PCL) and thermoplastic starch (TPS) to develop fully compostable plastics with improved ductility and toughness. To this end, PLA was first melt-mixed in a co rotating twin-screw extruder with up to 40 wt % of different PCL and TPS combinations and then shaped into pieces by injection molding. The mechanical, thermal, and thermomechanical properties of the resultant binary and ternary blend pieces were analyzed and related to their composition. Although the biopolymer blends were immiscible, the addition of both PCL and TPS remarkably increased the flexibility and impact strength of PLA while it slightly reduced its mechanical strength. The most balanced mechanical performance was achieved for the ternary blend pieces that combined high PCL contents with low amounts of TPS, suggesting a main phase change from PLA/TPS (comparatively rigid) to PLA/PCL (comparatively flexible). The PLA-based blends presented an ¿island-and-sea¿ morphology in which the TPS phase contributed to the fine dispersion of PCL as micro-sized spherical domains that acted as a rubber-like phase with the capacity to improve toughness. In addition, the here-prepared ternary blend pieces presented slightly higher thermal stability and lower thermomechanical stiffness than the neat PLA pieces. Finally, all biopolymer pieces fully disintegrated in a controlled compost soil after 28 days. Therefore, the inherently low ductility and toughness of PLA can be successfully improved by melt blending with PCL and TPS, resulting in compostable plastic materials with a great potential in, for instance, rigid packaging applications.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R, and by the EU H2020 project YPACK (reference number 773872).Quiles-Carrillo, L.; Montanes, N.; Pineiro, F.; Jorda-Vilaplana, A.; Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch. Materials. 11(11):1-20. https://doi.org/10.3390/ma11112138S1201111Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115-2126. doi:10.1098/rstb.2008.0311Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092Kumar, N., & Das, D. (2017). Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Composites Part B: Engineering, 130, 54-63. doi:10.1016/j.compositesb.2017.07.059Garcés, J. M., Moll, D. J., Bicerano, J., Fibiger, R., & McLeod, D. G. (2000). Polymeric Nanocomposites for Automotive Applications. Advanced Materials, 12(23), 1835-1839. doi:10.1002/1521-4095(200012)12:233.0.co;2-tLasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. doi:10.1016/j.biotechadv.2011.06.019Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952Kakroodi, A. R., Kazemi, Y., Nofar, M., & Park, C. B. (2017). Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 308, 772-782. doi:10.1016/j.cej.2016.09.130Kao, C.-T., Lin, C.-C., Chen, Y.-W., Yeh, C.-H., Fang, H.-Y., & Shie, M.-Y. (2015). Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Materials Science and Engineering: C, 56, 165-173. doi:10.1016/j.msec.2015.06.028Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials & Interfaces, 9(4), 4015-4023. doi:10.1021/acsami.6b11793Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Mooney, D. J., Breuer, C., McNamara, K., Vacanti, J. P., & Langer, R. (1995). Fabricating Tubular Devices from Polymers of Lactic and Glycolic Acid for Tissue Engineering. Tissue Engineering, 1(2), 107-118. doi:10.1089/ten.1995.1.107Elsawy, M. A., Kim, K.-H., Park, J.-W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. doi:10.1016/j.rser.2017.05.143Pluta, M., & Piorkowska, E. (2015). Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 46, 79-87. doi:10.1016/j.polymertesting.2015.06.014Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077Darie-Niţă, R. N., Vasile, C., Irimia, A., Lipşa, R., & Râpă, M. (2015). Evaluation of some eco-friendly plasticizers for PLA films processing. Journal of Applied Polymer Science, 133(13), n/a-n/a. doi:10.1002/app.43223Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Gerard, T., & Budtova, T. (2012). Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. European Polymer Journal, 48(6), 1110-1117. doi:10.1016/j.eurpolymj.2012.03.015Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002Gug, J.-I., Tan, B., Soule, J., Downie, M., Barrington, J., & Sobkowicz, M. J. (2017). Analysis of Models Predicting Morphology Transitions in Reactive Twin-Screw Extrusion of Bio-Based Polyester/Polyamide Blends. International Polymer Processing, 32(3), 363-377. doi:10.3139/217.3351Stoclet, G., Seguela, R., & Lefebvre, J.-M. (2011). Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 52(6), 1417-1425. doi:10.1016/j.polymer.2011.02.002Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028Wu, N., & Zhang, H. (2017). Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Materials Letters, 192, 17-20. doi:10.1016/j.matlet.2017.01.063Sarazin, P., Li, G., Orts, W. J., & Favis, B. D. (2008). Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer, 49(2), 599-609. doi:10.1016/j.polymer.2007.11.029Valerio, O., Misra, M., & Mohanty, A. K. (2018). Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polymer Testing, 65, 420-428. doi:10.1016/j.polymertesting.2017.12.018Ostafinska, A., Fortelný, I., Hodan, J., Krejčíková, S., Nevoralová, M., Kredatusová, J., … Šlouf, M. (2017). Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the Mechanical Behavior of Biomedical Materials, 69, 229-241. doi:10.1016/j.jmbbm.2017.01.015Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579Liu, H., Song, W., Chen, F., Guo, L., & Zhang, J. (2011). Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA) Ternary Blends. Macromolecules, 44(6), 1513-1522. doi:10.1021/ma1026934Wokadala, O. C., Ray, S. S., Bandyopadhyay, J., Wesley-Smith, J., & Emmambux, N. M. (2015). Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: The role of nanoclay hydrophobicity. Polymer, 71, 82-92. doi:10.1016/j.polymer.2015.06.058Zolali, A. M., & Favis, B. D. (2017). Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement. Soft Matter, 13(15), 2844-2856. doi:10.1039/c6sm02386jMatzinos, P., Tserki, V., Kontoyiannis, A., & Panayiotou, C. (2002). Processing and characterization of starch/polycaprolactone products. Polymer Degradation and Stability, 77(1), 17-24. doi:10.1016/s0141-3910(02)00072-1Maglio, G., Malinconico, M., Migliozzi, A., & Groeninckx, G. (2004). Immiscible Poly(L-lactide)/Poly(ɛ-caprolactone) Blends: Influence of the Addition of a Poly(L-lactide)-Poly(oxyethylene) Block Copolymer on Thermal Behavior and Morphology. Macromolecular Chemistry and Physics, 205(7), 946-950. doi:10.1002/macp.200300150Forssell, P., Mikkilä, J., Suortti, T., Seppälä, J., & Poutanen, K. (1996). Plasticization of Barley Starch with Glycerol and Water. Journal of Macromolecular Science, Part A, 33(5), 703-715. doi:10.1080/10601329608010888Raquez, J.-M., Nabar, Y., Srinivasan, M., Shin, B.-Y., Narayan, R., & Dubois, P. (2008). Maleated thermoplastic starch by reactive extrusion. Carbohydrate Polymers, 74(2), 159-169. doi:10.1016/j.carbpol.2008.01.027Averous, L. (2000). Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167. doi:10.1016/s0032-3861(99)00636-9Odelius, K., Ohlson, M., Höglund, A., & Albertsson, A. (2012). Polyesters with small structural variations improve the mechanical properties of polylactide. Journal of Applied Polymer Science, 127(1), 27-33. doi:10.1002/app.36842Zhen, Z., Ying, S., Hongye, F., Jie, R., & Tianbin, R. (2011). Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(Lactic Acid) and Poly(Butylene Succinate). Polymers from Renewable Resources, 2(2), 49-62. doi:10.1177/204124791100200201Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:10.1016/j.carbpol.2009.01.024Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082García-Campo, M., Boronat, T., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2017). Manufacturing and Characterization of Toughened Poly(lactic acid) (PLA) Formulations by Ternary Blends with Biopolyesters. Polymers, 10(1), 3. doi:10.3390/polym10010003Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Tang, L., Wang, L., Chen, P., Fu, J., Xiao, P., Ye, N., & Zhang, M. (2017). Toughness of ABS/PBT blends: The relationship between composition, morphology, and fracture behavior. Journal of Applied Polymer Science, 135(13), 46051. doi:10.1002/app.46051Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726Carmona, V. B., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2014). Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). Journal of Polymers and the Environment, 23(1), 83-89. doi:10.1007/s10924-014-0666-7Kim, H.-Y., Park, S. S., & Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607-620. doi:10.1016/j.colsurfb.2014.11.011Bordes, C., Fréville, V., Ruffin, E., Marote, P., Gauvrit, J. Y., Briançon, S., & Lantéri, P. (2010). Determination of poly(ɛ-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. International Journal of Pharmaceutics, 383(1-2), 236-243. doi:10.1016/j.ijpharm.2009.09.023Small, P. A. (2007). Some factors affecting the solubility of polymers. Journal of Applied Chemistry, 3(2), 71-80. doi:10.1002/jctb.5010030205Navarro-Baena, I., Sessini, V., Dominici, F., Torre, L., Kenny, J. M., & Peponi, L. (2016). Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 132, 97-108. doi:10.1016/j.polymdegradstab.2016.03.037Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56(2), 111-122. doi:10.1016/j.carbpol.2003.11.015Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. doi:10.1080/10408398.2011.636156Patrício, T., & Bártolo, P. (2013). Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process. Procedia Engineering, 59, 292-297. doi:10.1016/j.proeng.2013.05.124Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polymer Testing, 45, 93-100. doi:10.1016/j.polymertesting.2015.05.007Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Martin, O., & Avérous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332Di Franco, C. R., Cyras, V. P., Busalmen, J. P., Ruseckaite, R. A., & Vázquez, A. (2004). Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer Degradation and Stability, 86(1), 95-103. doi:10.1016/j.polymdegradstab.2004.02.009Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147-157. doi:10.1016/j.polymdegradstab.2007.10.011Thakore, I. ., Desai, S., Sarawade, B. ., & Devi, S. (2001). Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. European Polymer Journal, 37(1), 151-160. doi:10.1016/s0014-3057(00)00086-0Sikorska, W., Musiol, M., Nowak, B., Pajak, J., Labuzek, S., Kowalczuk, M., & Adamus, G. (2015). Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. International Biodeterioration & Biodegradation, 101, 32-41. doi:10.1016/j.ibiod.2015.03.02

    Similar works