148 research outputs found

    The G292.0+1.8 pulsar wind nebula in the mid-infrared

    Full text link
    G292.0+1.8 is a Cas A-like supernova remnant that contains the young pulsar PSR J1124-5916 powering a compact torus-like pulsar wind nebula visible in X-rays. A likely counterpart to the nebula has been detected in the optical VRI bands. To confirm the counterpart candidate nature, we examined archival mid-infrared data obtained with the Spitzer Space Telescope. Broad-band images taken at 4.5, 8, 24, and 70 microns were analyzed and compared with available optical and X-ray data. The extended counterpart candidate is firmly detected in the 4.5 and 8 micron bands. It is brighter and more extended in the bands than in the optical, and its position and morphology agree well with the coordinates and morphology of the torus-like pulsar wind nebula in X-rays. The source is not visible in 24 and 70 micron images, which are dominated by bright emission from the remnant shell and filaments. We compiled the infrared fluxes of the nebula, which probably contains a contribution from an unresolved pulsar in its center, with the optical and X-ray data. The resulting unabsorbed multiwavelength spectrum is described by power laws of significantly steeper slope in the infrared-optical than in X-rays, implying a double-knee spectral break between the optical and X-rays. The 24 and 70 microns flux upper limits suggest a second break and a flatter spectrum at the long wavelength limit. These features are common to two other pulsar wind nebulae associated with the remnants B0540-69.3 and 3C 58 and observed in all three ranges. The position, morphology, and spectral properties of the detected source allow us to comfirm that it is the infrared-optical counterpart to both the pulsar and its wind nebula system in the G292.0+1.8 supernova remnant.Comment: 5 pages, 2 figure

    Interpreting Crab Nebula’s synchrotron spectrum: two acceleration mechanisms

    Get PDF
    We outline a model of the Crab pulsar wind nebula with two different populations of synchrotron emitting particles, arising from two different acceleration mechanisms: (i) Component-I due to Fermi-I acceleration at the equatorial portion of the termination shock, with particle spectral index pI ≈ 2.2 above the injection break corresponding to γwindσwind ∼ 105, peaking in the ultraviolet (UV, γwind ∼ 102 is the bulk Lorentz factor of the wind, σwind ∼ 103 is wind magnetization); and (ii) Component-II due to acceleration at reconnection layers in the bulk of the turbulent Nebula, with particle index pII ≈ 1.6. The model requires relatively slow but highly magnetized wind. For both components, the overall cooling break is in the infrared at ∼0.01 eV, so that the Component-I is in the fast cooling regime (cooling frequency below the peak frequency). In the optical band, Component-I produces emission with the cooling spectral index of αo ≈ 0.5, softening towards the edges due to radiative losses. Above the cooling break, in the optical, UV, and X-rays, Component-I mostly overwhelms Component-II. We hypothesize that acceleration at large-scale current sheets in the turbulent nebula (Component-II) extends to the synchrotron burn-off limit of ϵs ∼ 100 MeV. Thus in our model acceleration in turbulent reconnection (Component-II) can produce both hard radio spectra and occasional gamma-ray flares. This model may be applicable to a broader class of high-energy astrophysical objects, like active galactic nuclei and gamma-ray burst jets, where often radio electrons form a different population from the high-energy electrons

    Accurate Ritz wavelengths of parity-forbidden [Fe II], [Ti II] and [Cr II] infrared lines of astrophysical interest

    Full text link
    With new astronomical infrared spectrographs the demands of accurate atomic data in the infrared have increased. In this region there is a large amount of parity-forbidden lines, which are of importance in diagnostics of low-density astrophysical plasmas. We present improved, experimentally determined, energy levels for the lowest even LS terms of Fe II, Ti II and Cr II, along with accurate Ritz wavelengths for parity-forbidden transitions between and within these terms. Spectra of Fe II, Ti II and Cr II have been produced in a hollow cathode discharge lamp and acquired using high-resolution Fourier Transform (FT) spectrometry. The energy levels have been determined by using observed allowed ultraviolet transitions connecting the even terms with upper odd terms. Ritz wavelengths of parity-forbidden lines have then been determined. Energy levels of the four lowest Fe II terms (a6^{6}D, a4^{4}F, a4^{4}D and a4^{4}P) have been determined, resulting in 97 different parity-forbidden transitions with wavelengths between 0.74 and 87 micron. For Ti II the energy levels of the two lowest terms (a4^{4}F and b4^{4}F) have been determined, resulting in 24 different parity-forbidden transitions with wavelengths between 8.9 and 130 micron. Also for Cr II the energy levels of the two lowest terms (a6^{6}S and a6^{6}D) have been determined, in this case resulting in 12 different parity-forbidden transitions with wavelengths between 0.80 and 140 micron.Comment: Accepted for publication in A&A, 13 pages, 6 figures, 9 table

    Multiwavelength Observations of Pulsar Wind Nebulae

    Full text link
    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very-high-energy gamma-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    Get PDF
    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.Comment: 21 pages, 4 tables, 16 figure

    The Radio - 2 mm Spectral Index of the Crab Nebula Measured with GISMO

    Full text link
    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power law spectrum, extrapolated up to a break frequency of log(nu_{b} [GHz]) = 2.84 +/- 0.29 or nu_{b} = 695^{+651}_{-336} GHz. The Crab Nebula is well-resolved by the ~16.7" beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.Comment: Accepted for publication in the Ap

    A JWST/MIRI and NIRCam Analysis of the Young Stellar Object Population in the Spitzer I region of NGC 6822

    Full text link
    We present an imaging survey of the Spitzer~I star-forming region in NGC 6822 conducted with the NIRCam and MIRI instruments onboard JWST. Located at a distance of 490 kpc, NGC 6822 is the nearest non-interacting low-metallicity (∼\sim0.2 Z⊙Z_{\odot}) dwarf galaxy. It hosts some of the brightest known HII regions in the local universe, including recently discovered sites of highly-embedded active star formation. Of these, Spitzer I is the youngest and most active, and houses 90 color-selected candidate young stellar objects (YSOs) identified from Spitzer Space Telescope observations. We revisit the YSO population of Spitzer~I with these new JWST observations. By analyzing color-magnitude diagrams (CMDs) constructed with NIRCam and MIRI data, we establish color selection criteria and construct spectral energy distributions (SEDs) to identify candidate YSOs and characterize the full population of young stars, from the most embedded phase to the more evolved stages. In this way, we have identified 129 YSOs in Spitzer I. Comparing to previous Spitzer studies of the NGC 6822 YSO population, we find that the YSOs we identify are fainter and less massive, indicating that the improved resolution of JWST allows us to resolve previously blended sources into individual stars.Comment: 17 pages, 9 figures, 2 tables, to be submitted to ApJ, comments welcom

    Observational Constraints on Superbubble X-ray Energy Budgets

    Full text link
    The hot, X-ray-emitting gas in superbubbles imparts energy and enriched material to the interstellar medium (ISM) and generates the hot ionized medium, the ISM's high-temperature component. The evolution of superbubble energy budgets is not well understood, however, and the processes responsible for enhanced X-ray emission in superbubbles remain a matter of debate. We present Chandra ACIS-S observations of two X-ray-bright superbubbles in the Large Magellanic Cloud (LMC), DEM L50 (N186) and DEM L152 (N44), with an emphasis on disentangling the true superbubble X-ray emission from non-related diffuse emission and determining the spatial origin and spectral variation of the X-ray emission. An examination of the superbubble energy budgets shows that on the order of 50% of the X-ray emission comes from regions associated with supernova remnant (SNR) impacts. We find some evidence of mass-loading due to swept-up clouds and metallicity enrichment, but neither mechanism provides a significant contribution to the X-ray luminosities. We also find that one of the superbubbles, DEM L50, is likely not in collisional ionization equilibrium. We compare our observations to the predictions of the standard Weaver et al. model and to 1-D hydrodynamic simulations including cavity supernova impacts on the shell walls. Our observations show that mass-loading due to thermal evaporation from the shell walls and SNR impacts are the dominant source of enhanced X-ray luminosities in superbubbles. These two processes should affect most superbubbles, and their contribution to the X-ray luminosity must be considered when determining the energy available for transport to the ISM.Comment: 25 pages, 11 figures, accepted for publication in Ap

    Supernova dust for the extinction law in a young infrared galaxy at z = 1

    Full text link
    We apply the supernova(SN) extinction curves to reproduce the observed properties of SST J1604+4304 which is a young infrared (IR) galaxy at z = 1. The SN extinction curves used in this work were obtained from models of unmixed ejecta of type II supernovae(SNe II) for the Salpeter initial mass function (IMF) with a mass range from 8 to 30 M_sun or 8 to 40 M_sun. The effect of dust distributions on the attenuation of starlight is investigated by performing the chi-square fitting method against various dust distributions. These are the commonly used uniform dust screen, the clumpy dust screen, and the internal dust geometry. We add to these geometries three scattering properties, namely, no-scattering, isotropic scattering, and forward-only scattering. Judging from the chi-square values, we find that the uniform screen models with any scattering property provide good approximations to the real dust geometry. Internal dust is inefficient to attenuate starlight and thus cannot be the dominant source of the extinction. We show that the SN extinction curves reproduce the data of SST J1604+4304 comparable to or better than the Calzetti extinction curve. The Milky Way extinction curve is not in satisfactory agreement with the data unless several dusty clumps are in the line of sight. This trend may be explained by the abundance of SN-origin dust in these galaxies; SN dust is the most abundant in the young IR galaxy at z = 1, abundant in local starbursts, and less abundant in the Galaxy. If dust in SST J1604+4304 is dominated by SN dust, the dust production rate is about 0.1 M_sun per SN.Comment: 12 pages, 8 figures, 1 tabl

    The Early Spectrophotometric Evolution of V1186 Scorpii (Nova Scorpii 2004 #1)

    Full text link
    We report optical photometry and optical through mid-infrared spectroscopy of the classical nova V1186 Sco. This slowly developing nova had an complex light curve with multiple secondary peaks similar to those seen in PW Vul. The time to decline 2 magnitudes, t2_2, was 20 days but the erratic nature of the light curve makes determination of intrinsic properties based on the decline time (e.g., luminosity) problematic, and the often cited MMRD relationship of Della Valle and Livio (1995) fails to yield a plausible distance. Spectra covering 0.35 to 35 μ\mum were obtained in two separate epochs during the first year of outburst. The first set of spectra, taken about 2 months after visible maximum, are typical of a CO-type nova with narrow line emission from \ion{H}{1}, \ion{Fe}{2}, \ion{O}{1} and \ion{He}{1}. Later data, obtained between 260 and 380 days after maximum, reveal an emerging nebular spectrum. \textit{Spitzer} spectra show weakening hydrogen recombination emission with the emergence of [\ion{Ne}{2}] (12.81 μ\mum) as the strongest line. Strong emission from [\ion{Ne}{3}] (15.56 μ\mum) is also detected. Photoionization models with low effective temperature sources and only marginal neon enhancement (Ne ∼\sim 1.3 Ne⊙_{\odot}) are consistent with these IR fine-structure neon lines indicating that V1186 Sco did not occur on a ONeMg white dwarf. In contrast, the slow and erratic light curve evolution, spectral development, and photoionization analysis of the ejecta imply the outburst occurred on a low mass CO white dwarf. We note that this is the first time strong [\ion{Ne}{2}] lines have been detected so early in the outburst of a CO nova and suggests that the presence of mid-infrared neon lines is not directly indicative of a ONeMg nova event.Comment: 7 figures, 37 pages. Astronimocal Journal accepte
    • …
    corecore