1,090 research outputs found

    Polar coralline algal CaCO<sub>3</sub>-production rates correspond to intensity and duration of the solar radiation

    Get PDF
    In this study we present a comparative quantification of CaCO3 production rates by rhodolith-forming coralline red algal communities situated in high polar latitudes and assess which environmental parameters control these production rates. The present rhodoliths act as ecosystem engineers, and their carbonate skeletons provide an important ecological niche to a variety of benthic organisms. The settings are distributed along the coasts of the Svalbard archipelago, being Floskjeret (78◦180N) in Isfjorden, Krossfjorden (79◦080N) at the eastern coast of Haakon VII Land, Mosselbukta (79◦530N) at the eastern coast of Mosselhalvøya, and Nordkappbukta (80◦310N) at the northern coast of Nordaustlandet. All sites feature Arctic climate and strong seasonality

    Prebiotic Nucleoside Synthesis: The Selectivity of Simplicity

    Get PDF
    Ever since the discovery of nucleic acids 150 years ago, major achievements have been made in understanding and decrypting the fascinating scientific questions of the genetic code. However, the most fundamental question about the origin and the evolution of the genetic code remains a mystery. How did nature manage to build up such intriguingly complex molecules able to encode structure and function from simple building blocks? What conditions were required? How could the precursors survive the unhostile environment of early Earth? Over the past decades, promising synthetic concepts were proposed providing clarity in the field of prebiotic nucleic acid research. In this Minireview, we show the current status and various approaches to answer these fascinating questions

    The influence of substrate temperature on growth of para-sexiphenyl thin films on Ir{111} supported graphene studied by LEEM

    Get PDF
    The growth of para-sexiphenyl (6P) thin films as a function of substrate temperature on Ir{111} supported graphene flakes has been studied in real-time with Low Energy Electron Microscopy (LEEM). Micro Low Energy Electron Diffraction (\mu LEED) has been used to determine the structure of the different 6P features formed on the surface. We observe the nucleation and growth of a wetting layer consisting of lying molecules in the initial stages of growth. Graphene defects -- wrinkles -- are found to be preferential sites for the nucleation of the wetting layer and of the 6P needles that grow on top of the wetting layer in the later stages of deposition. The molecular structure of the wetting layer and needles is found to be similar. As a result, only a limited number of growth directions are observed for the needles. In contrast, on the bare Ir{111} surface 6P molecules assume an upright orientation. The formation of ramified islands is observed on the bare Ir{111} surface at 320 K and 352 K, whereas at 405 K the formation of a continuous layer of upright standing molecules growing in a step flow like manner is observed.Comment: 9 pages, 7 figures, Revised Version as accepted for publication in Surface Scienc

    Smooth Growth of Organic Semiconductor Films on Graphene for High-Efficiency Electronics

    Get PDF
    High-quality thin films of conjugated molecules with smooth interfaces are important to assist the advent of organic electronics. Here, we report on the layer-by-layer growth of the organic semiconductor molecule p-sexiphenyl (6P) on the transparent electrode material graphene. Low energy electron microscopy and micro low energy electron diffraction reveal the morphological and structural evolution of the thin film. The layer-by-layer growth of 6P on graphene proceeds by subsequent adding of {(111)} layers

    Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene

    Get PDF
    Scalably grown and transferred graphene is a highly promising material for organic electronic applications, but controlled interfacing of graphene thereby remains a key challenge. Here, we study the growth characteristics of the important organic semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited graphene that has been transferred with polymethylmethacrylate (PMMA) onto oxidized Si wafer supports. A particular focus is on the influence of PMMA residual contamination, which we systematically reduce by H2 annealing prior to 6P deposition. We find that 6P grows in a flat-lying needle-type morphology, surprisingly independent of the level of PMMA residue and of graphene defects. Wrinkles in the graphene typically act as preferential nucleation centers. Residual PMMA does however limit the length of the resulting 6P needles by restricting molecular diffusion/attachment. We discuss the implications for organic device fabrication, with particular regard to contamination and defect tolerance.B.C.B acknowledges a College Research Fellowship from Hughes Hall, Cambridge. P.R.K. acknowledges the Lindemann Trust Fellowship. A.M. and G.R. acknowledge support by the Serbian MPNTR through Projects OI 171005 and III 45018. R.S.W. acknowledges a research fellowship from St. John’s College, Cambridge. S.H. acknowledges funding from EPSRC (GRAPHTED, Grant No. EP/K016636/1). We want to thank Dr. Sarah M. Skoff (Vienna University of Technology, Austria) for fruitful discussions.This is the author accepted manuscript. The final published version is available via AIP at http://scitation.aip.org/content/aip/journal/apl/106/10/10.1063/1.4913948

    Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    Get PDF
    AbstractWe have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process

    Atomistic mechanisms for the ordered growth of Co nano-dots on Au(788): comparison of VT-STM experiments and multi-scaled calculations

    Get PDF
    Hetero-epitaxial growth on a strain-relief vicinal patterned substrate has revealed unprecedented 2D long range ordered growth of uniform cobalt nanostructures. The morphology of a Co sub-monolayer deposit on a Au(111) reconstructed vicinal surface is analyzed by Variable Temperature Scanning Tunneling Microscopy (VT-STM) experiments. A rectangular array of nano-dots (3.8 nm x 7.2 nm) is found for a particularly large deposit temperature range lying from 60 K to 300 K. Although the nanodot lattice is stable at room temperature, this paper focus on the early stage of ordered nucleation and growth at temperatures between 35 K and 480 K. The atomistic mechanisms leading to the nanodots array are elucidated by comparing statistical analysis of VT-STM images with multi-scaled numerical calculations combining both Molecular Dynamics for the quantitative determination of the activation energies for the atomic motion and the Kinetic Monte Carlo method for the simulations of the mesoscopic time and scale evolution of the Co submonolayer

    Is keV ion induced pattern formation on Si(001) caused by metal impurities?

    Full text link
    We present ion beam erosion experiments performed in ultra high vacuum using a differentially pumped ion source and taking care that the ion beam hits the Si(001) sample only. Under these conditions no ion beam patterns form on Si for angles below 45 degrees with respect to the global surface normal using 2 keV Kr ions and fluences of 2 x 10^22 ions/m^2. In fact, the ion beam induces a smoothening of preformed patterns. Simultaneous sputter deposition of stainless steel in this angular range creates a variety of patterns, similar to those previously ascribed to clean ion beam induced destabilization of the surface profile. Only for grazing incidence with incident angles between 60 degrees and 83 degrees pronounced ion beam patterns form. It appears that the angular dependent stability of Si(001) against pattern formation under clean ion beam erosion conditions is related to the angular dependence of the sputtering yield, and not primarily to a curvature dependent yield as invoked frequently in continuum theory models.Comment: 15 pages, 7 figures. This is an author-created, un-copyedited version of an article published in Nanotechnology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Trajectories of long-term exposure to anticholinergic and sedative drugs: A latent class growth analysis

    Get PDF
    Introduction: A variety of drugs, which are frequently prescribed to older people, have anticholinergic and sedative effects whereby they may impair cognitive and physical function. Although substantial inter-individual variation in anticholinergic and sedative exposure has been documented, little is known about subpopulations with distinct trajectories of exposure. Methods: Data from the Longitudinal Aging Study Amsterdam (LASA), an ongoing Dutch population-based cohort study, collected over 20 years (1992-2012) at seven occasions, were analyzed. On each occasion, cumulative anticholinergic and sedative exposure was quantified with the Drug Burden Index, a linear additive pharmacological dose-response model. The most likely number of trajectories were empirically derived with Latent Class Growth Analysis using "Goodness of fit" statistics. Trajectories were then compared on physical and cognitive function. Results: A total of 763 participants completed all follow-ups (61% women; mean age 83, ±6). "Goodness of fit" statistics (Bayesian In-formation Criterion = 22916, Bootstrapped Likelihood Ratio Test of 3 vs. 2 classes = 514.12
    • …
    corecore