440 research outputs found

    Observations of Detailed Structure in the Solar Wind at 1 AU with STEREO/HI-2

    Full text link
    Heliospheric imagers offer the promise of remote sensing of large-scale structures present in the solar wind. The STEREO/HI-2 imagers, in particular, offer high resolution, very low noise observations of the inner heliosphere but have not yet been exploited to their full potential. This is in part because the signal of interest, Thomson scattered sunlight from free electrons, is ~1000 times fainter than the background visual field in the images, making background subtraction challenging. We have developed a procedure for separating the Thomson-scattered signal from the other background/foreground sources in the HI-2 data. Using only the Level 1 data from STEREO/HI-2, we are able to generate calibrated imaging data of the solar wind with sensitivity of a few times 1e-17 Bsun, compared to the background signal of a few times 1e-13 Bsun. These images reveal detailed spatial structure in CMEs and the solar wind at projected solar distances in excess of 1 AU, at the instrumental motion-blur resolution limit of 1-3 degree. CME features visible in the newly reprocessed data from December 2008 include leading-edge pileup, interior voids, filamentary structure, and rear cusps. "Quiet" solar wind features include V shaped structure centered on the heliospheric current sheet, plasmoids, and "puffs" that correspond to the density fluctuations observed in-situ. We compare many of these structures with in-situ features detected near 1 AU. The reprocessed data demonstrate that it is possible to perform detailed structural analyses of heliospheric features with visible light imagery, at distances from the Sun of at least 1 AU.Comment: Accepted by Astrophysical Journa

    A simulation of the IPS variations from a magnetohydrodynamical simulation

    Get PDF
    Calculations of the variations of interplanetary scintillation (IPS) from a disturbance simulated by a 3-D magnetohydrodynamical (MHD) model of the solar wind are presented. The simulated maps are compared with observations and it is found that the MHD model reproduces the qualitative features of observed disturbances. The disturbance produced by the MHD simulation is found to correspond in strength with the weakest disturbance which can be reliably detected by existing single station IPS observations

    Pharmaceuticals in soils of lower income countries: Physico-chemical fate and risks from wastewater irrigation.

    Get PDF
    Population growth, increasing affluence, and greater access to medicines have led to an increase in active pharmaceutical ingredients (APIs) entering sewerage networks. In areas with high wastewater reuse, residual quantities of APIs may enter soils via irrigation with treated, partially treated, or untreated wastewater and sludge. Wastewater used for irrigation is currently not included in chemical environmental risk assessments and requires further consideration in areas with high water reuse. This study critically assesses the contemporary understanding of the occurrence and fate of APIs in soils of low and lower-middle income countries (LLMIC) in order to contribute to the development of risk assessments for APIs in LLMIC. The physico-chemical properties of APIs and soils vary greatly globally, impacting on API fate, bioaccumulation and toxicity. The impact of pH, clay and organic matter on the fate of organic ionisable compounds is discussed in detail. This study highlights the occurrence and the partitioning and degradation coefficients for APIs in soil:porewater systems, API usage data in LLMICS and removal rates (where used) within sewage treatment plants as key areas where data are required in order to inform robust environmental risk assessment methodologies

    Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    Get PDF
    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidence of the 1650 AD tsunami was found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits consist of an irregular 5 to 30 cm thick layer of dark grey sand that overlies pumiceous deposits erupted during the Minoan eruption and are found at depths of 30–50 cm below the surface. Composition of the tsunami sand is similar to the composition of the present-day beach sand but differs from the pumiceous gravelly deposits on which it rests. The spatial distribution of the tsunami deposits was compared to available historical records and to the results of numerical simulations of tsunami inundation. Different source mechanisms were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~ 2 × 1016 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases of the eruption. Caldera subsidence is not an efficient tsunami source mechanism as short (and probably unrealistic) collapse durations (< 5 min) are needed. Pyroclastic flows cannot be discarded, but the required flux (106 to 107 m3 · s− 1) is exceptionally high compared to the magnitude of the eruption

    Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model

    Get PDF
    International audienceCase studies of landslide tsunamis require integration of marine geology data and interpretations into numerical simulations of tsunami attack. Many landslide tsunami generation and propagation models have been proposed in recent time, further motivated by the 1998 Papua New Guinea event. However, few of these models have proven capable of integrating the best available marine geology data and interpretations into successful case studies that reproduce all available tsunami observations and records. We show that nonlinear and dispersive tsunami propagation models may be necessary for many landslide tsunami case studies. GEOWAVE is a comprehensive tsunami simulation model formed in part by combining the Tsunami Open and Progressive Initial Conditions System (TOPICS) with the fully non-linear Boussinesq water wave model FUNWAVE. TOPICS uses curve fits of numerical results from a fully nonlinear potential flow model to provide approximate landslide tsunami sources for tsunami propagation models, based on marine geology data and interpretations. In this work, we validate GEOWAVE with successful case studies of the 1946 Unimak, Alaska, the 1994 Skagway, Alaska, and the 1998 Papua New Guinea events. GEOWAVE simulates accurate runup and inundation at the same time, with no additional user interference or effort, using a slot technique. Wave breaking, if it occurs during shoaling or runup, is also accounted for with a dissipative breaking model acting on the wave front. The success of our case studies depends on the combination of accurate tsunami sources and an advanced tsunami propagation and inundation model

    In utero exposure to cigarette smoke dysregulates human fetal ovarian developmental signalling

    Get PDF
    STUDY QUESTION How does maternal cigarette smoking disturb development of the human fetal ovary?&lt;p&gt;&lt;/p&gt; SUMMARY ANSWER Maternal smoking increases fetal estrogen titres and dysregulates several developmental processes in the fetal ovary.&lt;p&gt;&lt;/p&gt; WHAT IS KNOWN ALREADY Exposure to maternal cigarette smoking during gestation reduces human fetal ovarian cell numbers, germ cell proliferation and subsequent adult fecundity.&lt;p&gt;&lt;/p&gt; STUDY DESIGN, SIZE, DURATION The effects of maternal cigarette smoking on the second trimester human fetal ovary, fetal endocrine signalling and fetal chemical burden were studied. A total of 105 fetuses were studied, 56 from mothers who smoked during pregnancy and 49 from those who did not.&lt;p&gt;&lt;/p&gt; PARTICIPANTS/MATERIALS, SETTING METHODS Ovary, liver and plasma samples were collected from electively terminated, normally progressing, second trimester human fetuses. Circulating fetal hormones, levels of 73 fetal ovarian transcripts, protein localization, density of oocytes/primordial follicles and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in the fetal liver were determined.&lt;p&gt;&lt;/p&gt; MAIN RESULTS AND THE ROLE OF CHANCE Circulating fetal estrogen levels were very high and were increased by maternal smoking (ANOVA, P = 0.055–0.004 versus control). Smoke exposure also dysregulated (two-way ANOVA, smoking versus gestation weeks interaction, P = 0.046–0.023) four fetal ovarian genes (cytochrome P450 scc [CYP11A1], NOBOX oogenesis homeobox [NOBOX], activator of apoptosis harakiri [HRK], nuclear receptor subfamily 2, group E, member 1 [NR2E1]), shifted the ovarian Inhibin βA/inhibin α ratio (NHBA/INHA) transcript ratio in favour of activin (ANOVA, P = 0.049 versus control) and reduced the proportion of dominant-negative estrogen receptor 2 (ERβ: ESR2) isoforms in half the exposed fetuses. PAHs, ligands for the aryl hydrocarbon receptor (AHR), were increased nearly 6-fold by maternal smoking (ANOVA, P = 0.011 versus control). A fifth transcript, COUP transcription factor 1 (nuclear receptor subfamily 2, group F, member 1: NR2F1, which contains multiple AHR-binding sites), was both significantly increased (ANOVA, P = 0.026 versus control) and dysregulated by (two-way ANOVA, smoking versus gestation weeks interaction, P = 0.021) maternal smoking. NR2F1 is associated with repression of FSHR expression and smoke-exposed ovaries failed to show the normal increase in FSHR expression during the second trimester. There was a significantly higher number of DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4) VASA-positive (ANOVA, P = 0.016 versus control), but not POU domain, class 1, transcription factor 1 (POU5F1) OCT3/4-positive, oocytes in smoke-exposed fetuses and this matched with a significantly higher number of primordial follicles (ANOVA, P = 0.024 versus control).&lt;p&gt;&lt;/p&gt; LIMITATIONS, REASONS FOR CAUTION The effects of maternal smoking on establishment of the maximum fetal primordial follicle pool cannot be reliably studied in our population since the process is not completed until 28 weeks of gestation and normal fetuses older than 21 weeks of gestation are not available for study. Our data suggest that some fetal ovaries are affected by smoke exposure while others are not, indicating that additional studies, with larger numbers, may show more significant effects.&lt;p&gt;&lt;/p&gt; WIDER IMPLICATIONS OF THE FINDINGS Fetal exposure to chemicals in cigarette smoke is known to lead to reduced fecundity in women. Our study suggests, for the first time, that this occurs via mechanisms involving activation of AHR, disruption of inhibin/activin and estrogen signalling, increased exposure to estrogen and dysregulation of multiple molecular pathways in the exposed human fetal ovary. Our data also suggest that alterations in the ESR2 positive and dominant negative isoforms may be associated with reduced sensitivity of some fetuses to increased estrogens and maternal smoking

    Propagation of an Earth-directed coronal mass ejection in three dimensions

    Full text link
    Solar coronal mass ejections (CMEs) are the most significant drivers of adverse space weather at Earth, but the physics governing their propagation through the heliosphere is not well understood. While stereoscopic imaging of CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided some insight into their three-dimensional (3D) propagation, the mechanisms governing their evolution remain unclear due to difficulties in reconstructing their true 3D structure. Here we use a new elliptical tie-pointing technique to reconstruct a full CME front in 3D, enabling us to quantify its deflected trajectory from high latitudes along the ecliptic, and measure its increasing angular width and propagation from 2-46 solar radii (approximately 0.2 AU). Beyond 7 solar radii, we show that its motion is determined by an aerodynamic drag in the solar wind and, using our reconstruction as input for a 3D magnetohydrodynamic simulation, we determine an accurate arrival time at the Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie

    The Thomson Surface. II. Polarization

    Full text link
    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off of free electrons, yielding a radiance against the celestial sphere. In this second part of a three-article series, we discuss linear polarization of this scattered light parallel and perpendicular to the plane of scatter in the context of heliopheric imaging far from the Sun. The difference between these two radiances, (pB), varies quite differently with scattering angle, compared to the sum that would be detected in unpolarized light (B). The difference between these two quantities has long been used in a coronagraphic context for background subtraction and to extract some three-dimensional information about the corona; we explore how these effects differ in the wider-field heliospheric imaging case where small-angle approximations do not apply. We develop an appropriately-simplified theory of polarized Thomson scattering in the heliosphere, discuss signal-to-noise considerations, invert the scattering equations analytically to solve the three dimensional object location problem for small objects, discuss exploiting polarization for background subtraction, and generate simple forward models of several classes of heliospheric feature. We conclude that pB measurements of heliospheric material are much more localized to the Thomson surface than are B measurements, that the ratio pB/B can be used to track solar wind features in three dimensions for scientific and space weather applications better in the heliosphere than corona; and that, by providing an independent measurement of background signal, pB measurements may be used to reduce the effect of background radiances including the stably polarized zodiacal light.Comment: v2: text as accepted by APJ (before proofs); formatted with emulateapj.cl
    corecore