584 research outputs found

    The proton and neutron distribution in Na isotopes: the development of halo and shell structure

    Get PDF
    The interaction cross sections for ANa+12C^A Na + ^{12}C reaction are calculated using Glauber model. The continuum Hartree-Bogoliubov theory has been generalized to treat the odd particle system and take the continuum into account. The theory reproduces the experimental result quite well. The matter distributions from the proton drip line to the neutron drip line in Na isotopes have been systematically studied and presented. The relation between the shell effects and the halos has been examined. The tail of the matter distribution shows a strong dependence on the shell structure. The neutron N=28 closure shell fails to appear due to the coming down of the 2p3/22p_{3/2} and 2p1/22p_{1/2}. The development of the halo was understood as changes in the occupation in the next shell or the sub-shell close to the continuum limit. The central proton density is found to be decreasing near the neutron drip line, which is due to the proton-neutron interaction. However the diffuseness of the proton density does not change for the whole Na isotopes.Comment: 10 pages, 4 figure

    Study of Proton Magic Even-Even Isotopes and Giant Halos of Ca Isotopes with Relativistic Continuum Hartree-Bogoliubov Theory

    Get PDF
    We study the proton magic O, Ca, Ni, Zr, Sn, and Pb isotope chains from the proton drip line to the neutron drip line with the relativistic continuum Hartree-Bogoliubov (RCHB) theory. Particulary, we study in detail the properties of even-even Ca isotopes due to the appearance of giant halos in neutron rich Ca nuclei near the neutron drip line. The RCHB theory is able to reproduce the experimental binding energies EbE_b and two neutron separation energies S2nS_{2n} very well. The predicted neutron drip line nuclei are 28^{28}O, 72^{72}Ca, 98^{98}Ni, 136^{136}Zr, 176^{176}Sn, and 266^{266}Pb, respectively. Halo and giant halo properties predicted in Ca isotopes with A>60A>60 are investigated in detail from the analysis of two neutron separation energies, nucleon density distributions, single particle energy levels, the occupation probabilities of energy levels including continuum states. The spin-orbit splitting and the diffuseness of nuclear potential in these Ca isotopes are studied also. Furthermore, we study the neighboring lighter isotopes in the drip line Ca region and find some possibility of giant halo nuclei in the Ne-Na-Mg drip line nuclei.Comment: 45 pages, 20 figure

    Coulomb and nuclear breakup of three-body halo nuclei

    Full text link
    We investigate dissociation reactions of loosely bound and spatially extended three-body systems. We formulate a practical method for simultaneous treatment of long-range Coulomb and short-range nuclear interactions. We use 6^6He (n+n+α\alpha) and 11^{11}Li (n+n+9^{9}Li) as examples and study the two-neutron separation cross sections as functions of target and beam energy. Individual Coulomb and nuclear as well as interference contributions are also extracted.Comment: 7 pages, 3 figures, 'epl.cls' style (also sent

    The relativistic continuum Hartree-Bogoliubov description of charge-changing cross section for C,N,O and F isotopes

    Get PDF
    The ground state properties including radii, density distribution and one neutron separation energy for C, N, O and F isotopes up to the neutron drip line are systematically studied by the fully self-consistent microscopic Relativistic Continuum Hartree-Bogoliubov (RCHB) theory. With the proton density distribution thus obtained, the charge-changing cross sections for C, N, O and F isotopes are calculated using the Glauber model. Good agreement with the data has been achieved. The charge changing cross sections change only slightly with the neutron number except for proton-rich nuclei. Similar trends of variations of proton radii and of charge changing cross sections for each isotope chain is observed which implies that the proton density plays important role in determining the charge-changing cross sections.Comment: 10 pages, 4 figure

    Hyperfine Anomaly of Be Isotopes and Anomalous Large Anomaly in 11^{11}Be

    Get PDF
    A new result of investigations of the hyperfine structure (hfs) anomaly in Be isotopes is presented. The hfs constant for 11^{11}Be is obtained by using the core plus neutron type wave function: ∣2s12>+∣1d52×2+;1/2+> |2s_{1\over 2}>+|1d_{5\over2}\times 2^+ ; {1/2}^{+}> . A large hfs anomaly of 11^{11}Be is found, which is mainly due to a large radius of the halo single particle state.Comment: 14 pages, Late

    Direct radiative capture of p-wave neutrons

    Get PDF
    The neutron direct radiative capture (DRC) process is investigated, highlighting the role of incident p-wave neutrons. A set of calculations is shown for the 12-C(n,gamma) process at incoming neutron energies up to 500 keV, a crucial region for astrophysics. The cross section for neutron capture leading to loosely bound s, p and d orbits of 13-C is well reproduced by the DRC model demonstrating the feasibility of using this reaction channel to study the properties of nuclear wave functions on and outside the nuclear surface. A sensitivity analysis of the results on the neutron-nucleus interaction is performed for incident s- as well as p-waves. It turned out that the DRC cross section for p-wave neutrons is insensitive to this interaction, contrary to the case of incident s-wave neutrons. PACS number(s): 25.40Lw,21.10Gv,23.40.HcComment: 16 pages, REVTeX file, PostScript file, .dvi fil

    Molecular-orbital structure in neutron-rich C isotopes

    Get PDF
    The molecule-like structure of the C isotopes (A=12, 14, 16) is investigated using a microscopic α+α+α+n+n+⋅⋅⋅\alpha+\alpha+\alpha+n+n+\cdot \cdot \cdot model. The valence neutrons are classified based on the molecular-orbit (MO) model, and both π\pi-orbit and σ\sigma-orbit are introduced around three α\alpha-clusters. The valence neutrons which occupy the π\pi-orbit increase the binding energy and stabilize the linear-chain of 3α\alpha against the breathing-like break-up. However, 14^{14}C with the π\pi-orbit does not show clear energy minimum against the bending-like path. The combination of the valence neutrons in the π\pi- and the σ\sigma-orbit is promising to stabilize the linear-chain state against the breathing- and bending- modes, and it is found that the excited states of 16^{16}C with the (3/2π−)2(1/2σ−)2(3/2^-_\pi)^2(1/2^-_\sigma)^2 configuration for the four valence neutrons is one of the most promising candidates for such structure

    Spin-orbit splitting and the tensor component of the Skyrme interaction

    Full text link
    We study the role of the tensor term of the Skyrme effective interactions on the spin-orbit splittings in the N=82 isotones and Z=50 isotopes. The different role of the triplet-even and triplet-odd tensor forces is pointed out by analyzing the spin-orbit splittings in these nuclei. The experimental isospin dependence of these splittings cannot be described by Hartree-Fock calculations employing the usual Skyrme parametrizations, but is very well accounted for when the tensor interaction is introduced. The capability of the Skyrme forces to reproduce binding energies and charge radii in heavy nuclei is not destroyed by the introduction of the tensor term. Finally, we also discuss the effect of the tensor force on the centroid of the Gamow-Teller states.Comment: Submitted to Phys. Lett.

    Deformed nuclear halos

    Get PDF
    Deformation properties of weakly bound nuclei are discussed in the deformed single-particle model. It is demonstrated that in the limit of a very small binding energy the valence particles in specific orbitals, characterized by a very small projection of single-particle angular momentum onto the symmetry axis of a nucleus, can give rise to the halo structure which is completely decoupled from the rest of the system. The quadrupole deformation of the resulting halo is completely determined by the intrinsic structure of a weakly bound orbital, irrespective of the shape of the core.Comment: LaTeX source (21 pages) and postscript file with figures (15 pages). Accepted to Nucl. Phys.
    • 

    corecore