701 research outputs found

    On the Fock Transformation in Nonlinear Relativity

    Full text link
    In this paper, we propose a new deformed Poisson brackets which leads to the Fock coordinate transformation by using an analogous procedure as in Deformed Special Relativity. We therefore derive the corresponding momentum transformation which is revealed to be different from previous results. Contrary to the earlier version of Fock's nonlinear relativity for which plane waves cannot be described, our resulting algebra keeps invariant for any coordinate and momentum transformations the four dimensional contraction pμxμp_{\mu} x^{\mu} , allowing therefore to associate plane waves for free particles. As in Deformed Special Relativity, we also derive a canonical transformation with which the new coordinates and momentum satisfy the usual Poisson brackets and therefore transform like the usual Lorentz vectors. Finally, we establish the dispersion relation for Fock's nonlinear relativity.Comment: 10 pages, no figure

    Unimodular cosmology and the weight of energy

    Get PDF
    Some models are presented in which the strength of the gravitational coupling of the potential energy relative to the same coupling for the kinetic energy is, in a precise sense, adjustable. The gauge symmetry of these models consists of those coordinate changes with unit jacobian.Comment: LaTeX, 23 pages, conclusions expanded. Two paragraphs and a new reference adde

    The quantum dilogarithm and representations quantum cluster varieties

    Full text link
    We construct, using the quantum dilogarithm, a series of *-representations of quantized cluster varieties. This includes a construction of infinite dimensional unitary projective representations of their discrete symmetry groups - the cluster modular groups. The examples of the latter include the classical mapping class groups of punctured surfaces. One of applications is quantization of higher Teichmuller spaces. The constructed unitary representations can be viewed as analogs of the Weil representation. In both cases representations are given by integral operators. Their kernels in our case are the quantum dilogarithms. We introduce the symplectic/quantum double of cluster varieties and related them to the representations.Comment: Dedicated to David Kazhdan for his 60th birthday. The final version. To appear in Inventiones Math. The last Section of the previous versions was removed, and will become a separate pape

    Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots

    Full text link
    We study the electronic structure of a single self-assembled InAs quantum dot by probing elastic single-electron tunneling through a single pair of weakly coupled dots. In the region below pinch-off voltage, the non-linear threshold voltage behavior provides electronic addition energies exactly as the linear, Coulomb blockade oscillation does. By analyzing it, we identify the s and p shell addition spectrum for up to six electrons in the single InAs dot, i.e. one of the coupled dots. The evolution of shell addition spectrum with magnetic field provides Fock-Darwin spectra of s and p shell.Comment: 7 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit

    Full text link
    We report our rederivation of the equations of motion for relativistic compact binaries through the third-and-a-half post-Newtonian (3.5 PN) order approximation to general relativity using the strong field point particle limit to describe self-gravitating stars instead of the Dirac delta functional. The computation is done in harmonic coordinates. Our equations of motion describe the orbital motion of the binary consisting of spherically symmetric non-rotating stars. The resulting equations of motion fully agree with the 3.5 PN equations of motion derived in the previous works. We also show that the locally defined energy of the star has a simple relation with its mass up to the 3.5 PN order.Comment: 38 pages, no figures. Accepted for publication in Phys. Rev.

    Matched Asymptotic Expansion for Caged Black Holes - Regularization of the Post-Newtonian Order

    Full text link
    The "dialogue of multipoles" matched asymptotic expansion for small black holes in the presence of compact dimensions is extended to the Post-Newtonian order for arbitrary dimensions. Divergences are identified and are regularized through the matching constants, a method valid to all orders and known as Hadamard's partie finie. It is closely related to "subtraction of self-interaction" and shows similarities with the regularization of quantum field theories. The black hole's mass and tension (and the "black hole Archimedes effect") are obtained explicitly at this order, and a Newtonian derivation for the leading term in the tension is demonstrated. Implications for the phase diagram are analyzed, finding agreement with numerical results and extrapolation shows hints for Sorkin's critical dimension - a dimension where the transition turns second order.Comment: 28 pages, 5 figures. v2:published versio

    Boundary Conditions on Internal Three-Body Wave Functions

    Get PDF
    For a three-body system, a quantum wave function Ψm\Psi^\ell_m with definite \ell and mm quantum numbers may be expressed in terms of an internal wave function χk\chi^\ell_k which is a function of three internal coordinates. This article provides necessary and sufficient constraints on χk\chi^\ell_k to ensure that the external wave function Ψm\Psi^\ell_m is analytic. These constraints effectively amount to boundary conditions on χk\chi^\ell_k and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form rmr^{|m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.Comment: 41 pages, submitted to Phys. Rev.

    Angular Momentum Conservation Law for Randall-Sundrum Models

    Full text link
    In Randall-Sundrum models, by the use of general Noether theorem, the covariant angular momentum conservation law is obtained with the respect to the local Lorentz transformations. The angular momentum current has also superpotential and is therefore identically conserved. The space-like components JijJ_{ij} of the angular momentum for Randall-Sundrum models are zero. But the component J04J_{04} is infinite.Comment: 10 pages, no figures, accepted by Mod. Phys. Lett.

    Gate Adjustable Coherent Three and Four Level Mixing in a Vertical Quantum Dot Molecule

    Full text link
    We study level mixing in the single particle energy spectrum of one of the constituent quantum dots in a vertical double quantum dot by performing magneto-resonant-tunneling spectroscopy. The device used in this study differs from previous vertical double quantum dot devices in that the single side gate is now split into four separate gates. Because of the presence of natural perturbations caused by anharmonicity and anistrophy, applying different combinations of voltages to these gates allows us to alter the effective potential landscape of the two dots and hence influence the level mixing. We present here preliminary results from one three level crossing and one four level crossings high up in the energy spectrum of one of the probed quantum dots, and demonstrate that we are able to change significantly the energy dispersions with magnetic field in the vicinity of the crossing regions.Comment: 5 pages, 4 figures. MSS-14 conference proceedings submitted to Physica

    Harmonic Initial-Boundary Evolution in General Relativity

    Full text link
    Computational techniques which establish the stability of an evolution-boundary algorithm for a model wave equation with shift are incorporated into a well-posed version of the initial-boundary value problem for gravitational theory in harmonic coordinates. The resulting algorithm is implemented as a 3-dimensional numerical code which we demonstrate to provide stable, convergent Cauchy evolution in gauge wave and shifted gauge wave testbeds. Code performance is compared for Dirichlet, Neumann and Sommerfeld boundary conditions and for boundary conditions which explicitly incorporate constraint preservation. The results are used to assess strategies for obtaining physically realistic boundary data by means of Cauchy-characteristic matching.Comment: 31 pages, 14 figures, submitted to Physical Review
    corecore