21 research outputs found

    Impact of sequence variation in the ul128 locus on production of human cytomegalovirus in fibroblast and epithelial cells

    Get PDF
    The human cytomegalovirus (HCMV) virion envelope contains a complex consisting of glycoproteins gH and gL plus proteins encoded by the UL128 locus (UL128L): pUL128, pUL130, and pUL131A. UL128L is necessary for efficient infection of myeloid, epithelial, and endothelial cells but limits replication in fibroblasts. Consequently, disrupting mutations in UL128L are rapidly selected when clinical isolates are cultured in fibroblasts. In contrast, bacterial artificial chromosome (BAC)-cloned strains TB40-BAC4, FIX, and TR do not contain overt disruptions in UL128L, yet no virus reconstituted from them has been reported to acquire mutations in UL128L in vitro. We performed BAC mutagenesis and reconstitution experiments to test the hypothesis that these strains contain subtle mutations in UL128L that were acquired during passage prior to BAC cloning. Compared to strain Merlin containing wild-type UL128L, all three strains produced higher yields of cell-free virus. Moreover, TB40-BAC4 and FIX spread cell to cell more rapidly than wild-type Merlin in fibroblasts but more slowly in epithelial cells. The differential growth properties of TB40-BAC4 and FIX (but not TR) were mapped to single-nucleotide substitutions in UL128L. The substitution in TB40-BAC4 reduced the splicing efficiency of UL128, and that in FIX resulted in an amino acid substitution in UL130. Introduction of these substitutions into Merlin dramatically increased yields of cell-free virus and increased cell-to-cell spread in fibroblasts but reduced the abundance of pUL128 in the virion and the efficiency of epithelial cell infection. These substitutions appear to represent mutations in UL128L that permit virus to be propagated in fibroblasts while retaining epithelial cell tropism

    Human Cytomegalovirus Entry into Dendritic Cells Occurs via a Macropinocytosis-Like Pathway in a pH-Independent and Cholesterol-Dependent Manner

    Get PDF
    Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection

    Human cytomegalovirus infection of M1 and M2 macrophages triggers inflammation and autologous T-cell proliferation

    No full text
    Macrophages (MΦ) are first targets during human cytomegalovirus (HCMV) infection and are thought to be crucial for viral persistence and dissemination. However, since MΦ are also a first line of defense and key modulators of the immune response, these cells are at the crossroad between protection and viral pathogenesis. To date, the MΦ-specific contribution to the immune response against HCMV is still poorly understood. In view of the opposite roles of M1 and M2 MΦ during initiation and resolution of the immune response, we characterized the effects of HCMV infection on classically activated M1 MΦ and alternatively activated M2 MΦ. Although HCMV susceptibility was higher in M2 MΦ, HCMV established a productive and persistent infection in both types of MΦ. Upon HCMV encounter, both types of MΦ acquired similar features of classical activation and secreted high levels of proinflammatory cytokines and chemokines. As a functional consequence, conditioned media obtained from HCMV-infected M1 and M2 MΦ potently activated freshly isolated monocytes. Finally, compared to HCMV-infected monocyte-derived dendritic cells, infected M1 and M2 MΦ were more efficient in stimulating proliferation of autologous T cells from HCMV-seropositive donors at early times (24 h) postinfection, while the MΦ immunostimulatory properties were reduced, but not abrogated, at later times (72 h postinfection). In summary, our findings indicate that MΦ preserve proper antigen presentation capacity upon HCMV infection while enhancing inflammation, thus suggesting that MΦ play a role in the maintenance of the large HCMV-specific T-cell repertoire in seropositive individuals

    Mutational Mapping of pUL131A of Human Cytomegalovirus Emphasizes Its Central Role for Endothelial Cell Tropism

    No full text
    The UL131A protein is part of a pentameric variant of the gcIII complex in the virion envelope of human cytomegalovirus (HCMV), which has been found essential for efficient entry into endothelial cells (ECs). Using a systematic mutational scanning approach, we aimed to define peptide motifs within the UL131A protein that contribute to EC infection. Mutant viruses were generated in which charged amino acids within frames of 2 to 6 amino acids were replaced with alanines. The resulting viruses were evaluated with regard to their potential to infect EC cultures. Four clusters of charged amino acids essential for EC infection were identified (amino acids 22 to 27, 32 to 35, 64 to 69, and 116 to 121). Mutations of individual charge clusters within amino acids 72 to 104 caused minor reductions of EC tropism, but these effects were additive in a combined mutation, showing that this region also contributes to EC tropism. Only charge clusters within amino acids 46 to 58 were found irrelevant for EC infection. In conclusion, the unusual sensitivity to mutations, together with the remarkable conservation of the UL131A protein, emphasizes its particular role for EC tropism of HCMV

    Protein pUL128 of Human Cytomegalovirus Is Necessary for Monocyte Infection and Blocking of Migrationâ–¿

    Get PDF
    We have previously shown that only endotheliotropic strains of human cytomegalovirus (HCMV), such as TB40E, infect monocytes and impair their chemokine-driven migration. The proteins encoded by the UL128-131A region (UL128, UL130, and UL131A) of the HCMV genome, which assemble into a pentameric gH-gL-UL128-UL130-UL131A envelope complex, have been recognized as determinants for HCMV endothelial cell tropism. The genes for these proteins are typically inactivated by mutations in all fibroblast-adapted strains that have lost the diversified tropism of clinical isolates. By using mutant HCMV reconstituted from TB40E-derived bacterial artificial chromosomes (BAC) encoding a wild-type (wt) or mutated form of UL128, we show here that UL128-131A products are essential determinants of infection in monocytes and that pUL128, in particular, can block chemokine-driven motility. The virus BAC4, encoding wt UL128, established infection in monocytes, induced the intracellular retention of several chemokine receptors, and rendered monocytes unresponsive to different chemokines. In contrast, the virus BAC1, encoding a mutated UL128, failed to infect monocytes and to downregulate chemokine receptors. BAC1-exposed monocytes did not express immediate-early (IE) products, retained virions in cytoplasmic vesicles, and exhibited normal chemokine responsiveness. A potential role of second-site mutations in the observed phenotype was excluded by using the revertant viruses BAC1rep and BAC4mut. By incubating noninfected monocytes with soluble recombinant pUL128, we observed both the block of migration and the chemokine receptor internalization. We propose that among the gH-gL-UL128-UL130-UL131A complex subunits, the UL128 protein is the one that triggers monocyte paralysis
    corecore