9,269 research outputs found

    Adiabatic optical entanglement between electron spins in separate quantum dots

    Full text link
    We present an adiabatic approach to the design of entangling quantum operations with two electron spins localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically-excited localized states. Slowly-varying optical pulses minimize the pulse noise and the relaxation of the excited states. An analytic "dressed state" solution gives a clear physical picture of the entangling process, and a numerical solution is used to investigate the error dynamics. For two vertically-stacked quantum dots we show that, for a broad range of dot parameters, a two-spin state with concurrence C>0.85C>0.85 can be obtained by four optical pulses with durations 0.11\sim 0.1 - 1 ns.Comment: 7 pages, 5 figure

    Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration

    Full text link
    We consider the initialization of the spin-state of a single electron trapped in a self-assembled quantum dot via optical pumping of a trion level. We show that with a magnetic field applied perpendicular to the growth direction of the dot, a near-unity fidelity can be obtained in a time equal to a few times the inverse of the spin-conserving trion relaxation rate. This method is several orders-of-magnitude faster than with the field aligned parallel, since this configuration must rely on a slow hole spin-flip mechanism. This increase in speed does result in a limit on the maximum obtainable fidelity, but we show that for InAs dots, the error is very small.Comment: 4 pages, 4 figure

    A search for rapid optical variability in radio-quiet quasars

    Full text link
    The detection of rapid variability on a time-scale of hours in radio-quiet quasars (RQQSOs) could be a powerful discriminator between starburst, accretion disc and relativistic jet models of these sources. This paper contains an account of a dedicated search for rapid optical variability in RQQSOs. The technique used differential photometry between the RQQSO and stars in the same field of view of the CCD. The 23 RQQSOs that were observed all have high luminosities (-27 1. The total amount of observation time was about 60 hours and these observations are part of an ongoing programme, started in September 1990, to search for rapid variability in RQQSOs. No evidence for short-term variability greater than about 0.1 magnitudes was detected in any of the 23 sources, however long-term variability was recorded for the radio-quiet quasar PG 2112+059. The finding charts are included here because they identify the RQQSO and the reference stars used in the photometry, and hence are available for use by other observers.Comment: Accepted for publication in A&AS. 10 pages, 3 figures. Figure 1 (finding charts) available by anonymous ftp from: bermuda.ucd.ie:/pub/outgoing/charts.eps.g

    Hyperbolic Metamaterial Resonator-Antenna Scheme for Large, Broadband Emission Enhancement and Single Photon Collection

    Full text link
    We model the broadband enhancement of single-photon emission from color centres in silicon carbide nanocrystals coupled to a planar hyperbolic metamaterial, HMM resonator. The design is based on positioning the single photon emitters within the HMM resonator, made of a dielectric index-matched with silicon-carbide material. The broadband response results from the successive resonance peaks of the lossy Fabry Perot structure modes arising within the high-index HMM cavity. To capture this broadband enhancement in the single photon emitters spontaneous emission, we placed a simple gold based cylindrical antenna on top of the HMM resonator. We analyzed the performance of this HMM coupled antenna structure in terms of the Purcell enhancement, quantum efficiency, collection efficiency and overall collected photon rate. For perpendicular dipole orientation relative to the interface, the HMM coupled antenna resonator leads to a significantly large spontaneous emission enhancement with Purcell factor of the order of 250 along with a very high average total collected photon rate, CPR of about 30 over a broad emission spectrum, 700 nm to 1000 nm. The peak CPR increases to about 80 at 900 nm, corresponding to the emission of silicon-carbide quantum emitters. This is a state of the art improvement considering the previous computational designs have reported a maximum average CPR of 25 across the nitrogen-vacancy centre emission spectrum, 600 nm to 800 nm with the highest value being about 40 at 650 nm

    Meta-model Pruning

    Get PDF
    Large and complex meta-models such as those of Uml and its profiles are growing due to modelling and inter-operability needs of numerous\ud stakeholders. The complexity of such meta-models has led to coining\ud of the term meta-muddle. Individual users often exercise only a small\ud view of a meta-muddle for tasks ranging from model creation to construction\ud of model transformations. What is the effective meta-model that represents\ud this view? We present a flexible meta-model pruning algorithm and\ud tool to extract effective meta-models from a meta-muddle. We use\ud the notion of model typing for meta-models to verify that the algorithm\ud generates a super-type of the large meta-model representing the meta-muddle.\ud This implies that all programs written using the effective meta-model\ud will work for the meta-muddle hence preserving backward compatibility.\ud All instances of the effective meta-model are also instances of the\ud meta-muddle. We illustrate how pruning the original Uml metamodel\ud produces different effective meta-models
    corecore