
., ~ Discussion
for a erEconomic Research

~INIIINI I IIIN III nIII N III IIII;NIII NAINI
63



No. 9063
REGRESSION MODELS UNDER COMPETING

COVARIANCE MATRICES: A BAYESIAN PERSPECTIVE
~'~by Siddhartha Chib,

Jacek Osiewalski and Mark Steel
J J i~ , , ~J

November 1990

zSSN o924-7815



REGRESSION MODELS UNDER COMPETING
COVARIANCE MATRICES: A BAYESIAN PERSPECTIVE

Siddhartha Chib Jacek Osiewalski
Washington University Academy of Economics
St. Louis, MO 63108, USA Kraków, Poland

Mark FJ. Steel
Tilburg University
Tilburg, The Netherlands

Keywords: elliptical distributions; posterior odds;
model mixtures; AR(1) and MA(1) errors.

A r This paper develnps Bayesian approaches to linecu elliptica! reb~ession
models that differ in the covariance swcture. A pretest method based on posterior model
probabilities is compared with a pooling approach in which the data density is defined as
a mixture of elliptical densities witlt weights that are unknown parameters. All calculati-
ons are simple, and prior inputs may be kept to a minimum in an important reference
case. An example from the econometrics literature is presented as an i[[ustration of the
ideas.

Acknowledeements: The first two authors wish to acknowledge the hospitaGty of the Center for
Economic Research ( CenIER), Tilburg University, which provided a congenial environment for writing

this paper. T'he lhird author óas benefited [rom a reseazch fellowship of the Royal Netherlands Academy

of Arts and Sciences (KNAV~.



1

l. INTRODUCTION

In recent years, Bayesian researchen have devoted a great deal of attention to

the problem of model selection in regression ( cf., Gaver and Geisel, 1974, Geweke,

1988, Poirier, 1988, Smith, 1977, Zellner and Siow, 1980, and Zellner, 1984). Usually,

the focus has been on selecting the most adequate regression model from a collection

of models which differ in their mean, for a given covariance structure of the data. In

this paper, as in Poirier ( 1988), we examine the opposite situation in which the mean

is fixed, and the covariances vary, a problem often tackled by the applied modeler,

through classical tests for autocorrelation, heteroskedasticity, etc.

The approaches taken here are Bayesian in nature. First we develop the

conventional Bayesian pretest approach in which inferences about the parameters and

future observations are based on a single model selected through, perhaps, the highest

posterior probability criterion. We emphasize, however, an alternative approach in

which the competing models are pooled in terms of a finite mixture model, similar to

Griffiths and Dao (1980). The selection of a single model is unnecessary in this

approach, and information from all the models is combined, an attractive feature for

the parameters that are common to all the models. The methods we develop are easy

to implement, especially in a convenient reference case that, in addition, requires

minimal prior inputs. Finally, we note that all results are derived for general

elliptical data densities and finite mixtures of them.

Some comments about the notation that is used. The density of the k-variate

Student-t distribution with degrees of freedom v, location vector ~~, and precision

matrix 11,, is denoted hy f`(. ~ v,N.,f2). Similarly, the densities of the Dirichlet
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distribution with parameter vector y, and the Beta distribution with parameters a and

b, are denoted by fo (. I Y) and fB (. ~ a,b), respectively.

2. THE BAYESIAN MODEL

Consider the m competing linear regression models

M,:y-X~ t e i:l-m (1)

where the error vector e has a n-variate elliptical distribution with location vector 0,

and dispersion matrix ~V„ with d a common scale factor, and V;-V;(n;) a model

specific PDS matrix function of q„ a vector of dimension 1,. Note that the m models

share the same location vector X(i where X is a nxk full column rank matri~c that is

either not random or independent of the parameters ~, d and r),. Dynamic models

with lagged values of y as regressors are entirely covered by our framework, as

mentioned at the end of Subsection 3.1.

Under these assumptions the data densiry corresponding to the ith model M; is

,
n(v I X.a,~,n;,MJ -(~)' I V I-' a,[(y-X~)'o-'V-'(v-X~)1 (2)

whcre g,~.~, i- I,...,m, is a nonnegative function fulfilling the condition (cf. Dickey and

Chen, 1985)

J~ u 3 8,(u ) du - r( 2)~ '. (3)

It should be noted that the model errors in (1) are assigned a very general distributi-
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on that gives rise to e.g. the multivariate Normal, Student-t and Pearson type II

distributions (see Johnson, 1987).

Suppose that the prior density of the parameters is given by

P(P.d,n, M~) - c,a' P([3)P(Tl, I M~), (4)

a product of the Jeffreys' type improper prior on o~, a prior on the common regressi-

on coefficients (i, and a possibly model specific prior on n„ where c, is an arbitrary

positive constant. As shown in Osiewalski and Steel (1990), this prior structure

assures that the joint densiry of (y, p, rt J is the same as that obtained under the usual

Normality assumption in (1), and is given by

n(~, a,n, I XM,) - JR n(r,a,~.n, I X,n~,b~-

-~, r'("zk) ~~ n(R)n(11,IM.) i~,(nJ f,"(~ I n-k,~,~ ssExv-~~ (s)

, , n-4

defining h,(rl,) - ~V ~' ~X~!'X ~-T (SSE,) T , and where ~, -(X1!-'X)' X'V j~ is

the generalized least squares estimate and SSE, -(y-X~i,)' V'(y-X(i,) -

3. POST'ERIOR ODDS ANALYSIS AND INFERENCE WITH A SINGLE

MODEL

In this section, we derive the posterior probability of model M, under two

different priors on the regression coefficients. [f we assign prior probability p(MJ to

the ith model, then the posterior probability of M, is given by
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P(M, I Y,~ - P(M,) P(Y I X,M,)

~P(M,) P(Y I X,M,)
,.,

(6)

where p(y ~ X,MJ, i-1,.. ,m, denotes the predictive density.

The Bayesian counterpart of the conventional pretest procedure is to first

select a particular model by employing (6) and then conducting inference with the

chosen model. In this approach the model choice that minimizes posterior e~cpected

loss is suggested. If losses of incorrect decisions are identical then this is equivalent

to the criterion of highest posterior model probability.

3.1 ilniform Prior on B

We shall consider in detail the reference case with an improper uniform prior on

~ in (4). The resulting model probabilities are notable in that they are easy to

calculate and prior elicitation only has to be done for the tt; s. in practice, their priors

can be chosen to be diffuse. It should be emphasized that although the prior

densities on the common parameters (i and d can be improper, the priors on the mo-

del-specífic parameters q, have to be proper. Otherwise, posterior probabilities of the

models, given in Proposition 1 below, are not well defined due to a dependence on

arbitrary constants we may put in the priors of the n; s.

Let us assume the prior

P(a,d,n, I M,) - P(~)P(~)P(rl: I M:) - có~P(n: I M:) ~ (~)

~ e R`, d E lt., c~0 and fp(tl, ~ MJdn, - 1, where the integral is taken over the

support of q„ i-1,...,m.



5

Combining the data density in ( 2), with the prior in ( 7), and assigning prior

probability, p(MJ, to the ith model, i-1,...,m, we obtain the following result.

Proposition 1: Under ( 2) and (7) the pasterior probability of model i is given

by (6) where p(y ~ X,MJ is the ( improper) predictive density given by

P(Y ~ X,M,) - cP( n2k)~ ~Jh.(n;)P(n, ~ M.)dn, - cP(n2k )-rr-~K (g)

provided the value of the integral I~ ~~, i- 1,...,m.

The proof of Proposition 1 is straightforward in the Normal case, and as

mentioned in Section 2, the result carries over to the more general elliptical model in

(2).

After choosing a particular modet, posterior .and predictive inferences are

conducted with the retained model on the basis of the standard formulas. For

example, if M, is selected, then the posterior of (i is given by

P(a ~Y,X,M,) - jf`(P ~ n-k, ~,~ SSEX V~P(n; ~Y,X,M;)dn.

where the weighting function is the posterior of q,

(9)

P(n, I YX,M,) - K,'h,(n;)P(~, I MJ . (10)

Note that p(M; ~ y,X) can also be expressed as p(M, ~ y,i7 - p(M uC ~~p(M )K
;-~

and the Bayes factor B„ of M, against M, is I~~K,. It is not difficult to see that these

E3ayes factors are invariant with respect to affine transformations of the data, from

y - Y - sytX9 ( sER. 9ER`).
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Also, calculating the Bayes factors, and posterior and predictive densities under

a uniform prior on (i as in (7) will only require numerical integration of dimension I„

i- 1,...,m, which will typically be very small (as in the example in Section 5).

A special case of Proposition 1 provides a direct link with some classical testing

results, as have appeared in King (1983, 1987-88). If we calculate (8) under a Dirac

prior measure for n„ namely p(n, I M,) - I(~, - it,'), i-1,...,m, then the resulting

Bayes factor becomes

h,(n; )

" - h~(n;)

It can be shown that this is exactly the yuantity arising from the use of the

Neyman-Pearson lemma for constructing a Most Powerful Invariant test in King

(1983, p.40).

The expression in (]1) can alternatively be interpreted as the conditional Bayes

factor given n, - r1,', and rt, - r1,'. The theory of maximal invariants, which allows

King (1983) to eliminate ((i, d) cannot be followed for rt,. Therefore, the sampling-

theory analysis has to be conducted for specific values of rI, that restate the model

choice in terms of simple hypotheses.

In the more general setting of dynamic linear regression models, Inder (1990)

proposes a test for autocorrelation which also conditions on the OLS estimate for the

coefficient of the lagged dependent variable. In our framework, the latter coefficient

can analytically be integrated out jointly with the coefficients of the exogenous

variables, leading to similar predictive densities as in (8). The entire analysis of the

static case discussed here directly carries over to dynamic models, without any

additional complications.
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3.2 Student yrior on B

If we use the prior structure in (4) with an independent Student-t density on (i,

say,
P(a,d,n, I M,) - ~a~;"(a I e,b,~)P(n, I M,) ~

WÍIh O~ E it„ Ci ~ 0 and fp(r1, I M,) - 1, we obtain the following posterior results

(12)

P(a ~ n,,YX,N1,) - H,( n,)f'(~ ~ e,b,A)f,`((i I n-k,~,~SSEX~! ~~ , (13)

a 2-0 poly-t density (see Drèze, 1977), which can be marginalized with respect to the

density

P(n, I Y,X,M,) - L, ~H,(n,)h,(n,)P(n, I M) . (14)

Proposition 2: Under (2) and (l2) the posterior probability of model M, is given by

(6) where the predictive densities now take the form

P(Y ~X,M) - c~r(n2k)Tr TL. J-1,...,m ,

provided all L5 are finite.

(15)

The Bayes factor B„ is now L,~Lti, which is again invariant to affine transforma-

tions from y - y - syf Xq (sER, yER`) provided we also transform the hyperpa-

rameters as follows b- sb f q, .4 - s"ZA.

'I'he price to pay for using an independent Student-t prior on (i in (12) is that

the required numerical integrations are now of dimension 1, t 1, using the properties

of 2-0 poly-t densities (see Richard and Tompa, 1980).



4. MIXTURES OF DATA DENSITIES

In this section, we avoid selecting a particular model and develop a Bayesian

pooling approach that does not require the direct specification of prior probabilities

for each of the models. Specifically, we consider a mixture of sampling densities, and

depart from tradition ( cf. Griffiths and Dao, 1980), by letting the weights of the

miacture, or prior probabilities of models, be random quantities.

Consider now the data density

P(Y~X,~,~,n,~) - ~~,P(Y~X,a,d,T1,~M,)
,.~

(16)

,l, ~ 0, i- l,..m, ~,l - 1, and rI -( rl,, i - I,...m), ~l -(,1,, i-1,...,m) , which is a finite
,.~

mixture of the elliptical densities in (2). The mixing parameter .l, can be interpreted

as p(M, I~), the prior probability of M, conditional on .l. Sometimes, it is also possible

to interpret each J~, as representing the proportion of the ith subpopulation in an

aggregate population. In fact, the stochastic nature of x leads to a hierarchical

structure on the prior model probabilities through p(M,) - fp(M, ~ A) p(.1) dx -

E(,l,).

We consider in detail the reference case with independent improper prior

P(a,~,n.z) - c~v ZP(P)P(n)P(~) , (17)

where p(n) -~p(rt,) , and each p(q,) is proper. The prior independence between
,.~

n,'s reflects our assumption that all the parameters in n are model-specific. Further-

more, we assume that prior information on r), is not affected by conditioning on any

of the models, i.e. p(rl, I M,) - P(n~ I M,) - P(n,).1- 1,...,m. This ensures that the same

priors on the rt's are used both in Section 3 and here. Also, we require the existence
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of the prior mean vector of ~l, say a- (a;, i-1,...,m). Remark that, by its very

definition, a, is the unconditional prior probability of model i, p(M,). A natural choice

for the prior on x would be a Dirichlet density with parameter vector Ca, where the

scalar C reflects the strength of our beliefs.

As in Section 3, irrespective of the particular elliptical densities chosen in (16),

the results after integrating out o~ are given by (see Osiewalski and Steel, 1990)

P(Y,P,n,~ I ~ - c,P(n2k)Tr ~P(~)P(Tl)P(~)

~ Z;h,(Tl,)rk(~ I n-k,~,~SSEX V ~~,

with p, and SSE; defined as previously. Integrating out x we get

P(Y,P,n I~ - c~r(n2k)~ ~P(~)P(n)

~ a.h,(n,)Ï,"(a I n-k, ~,,
SSE

X~! '.17.
~,

(18)

(19)

From (19) it follows that the joint density of y, ~, and n is a finite mixture of

the densities p(y,(i,n ~.Y,M,)-P(y,ji,r).~X,M,)~P(n,), with p(y,(i,q,~?C,M,) as in (5) and
,.,

the unconditional prior probabilities a, as weights. More importantly, the uncertainty

regarding ,l is completely irrelevant, in the sense of Lindley (1990, pp. 54-55), for the

purpose of prediction, and posterior inference on ~ and q. Thus, the extension to the

"large world" where ,l is stochastic does not affect the "small world". As a practical

matter, this implies that elicitation of the mean prior model probabilities is sufficient,

unless ~l itself is of interest. In other words, if we use a Dirichlet prior on Jl with

parameter Ca , the value of C does not matter.

Taking p((i) to be uniform over A` in the prior structure
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P(a.d,n,,t) - ca ZP(n)P(~) (20)

(i ER`, d eR., c~0, ~p(n)drl - 1 , we can state the following proposition:

ProQpsition 3: Under (16) and (20) the marginal posterior densities are given by the

following finite mixtures

P(QIY,~ - ~W,P(aIY,X,M)

where

(21)

P(n, I Y,~ - w, P(T1, I YX,ti1,) }(1-WJP(r1J (22)

- p(M, I Y,J~ - a,K ~~ a K and the mixands are the model-specific
,.~

posterior densities given in (9) and (10), respectively.

Remark that the weights used to miu the posterior densities in (2t) and (22)

are exactly the posterior model probabilities given in Proposition 1. The model-

specific character of q, implies that sample information will only enter through M,.

Finally, note that extending our results to other prior distributions for (i, as e.g. in

Subsection 3.2, is straightforward, but we shall not treat this issue here.

[n the case that ,t itself is of interest to the model user, the complete specifica-

tion of its prior density becomes relevant. If we assume in (20) that

P(~) - h(~ ~ Ca) (23)

the marginal posterior density of 1~, takes the convenient form of a mixture of two

Beta densities where the weights are p(M, ~ y,X) and 1-p(M, ~ y,X),
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P(~, (Y,~ -wf,(Z, ~ Ca,~1,C(1-a,)) '(1-w,)fe(~, I Ca.C(1-a.)tl) . (24)

It is immediately obvious from ( 24) that for large C the prior on A will

undergo almost no revision, whereas if C becomes very small the posterior of x will

tend to a Dirac distribution putting point mass on the posterior model probabilities

P(M~ i y,X)-w~.

5. AN EXAMPLE: AR(1) VERSUS MA(1) ERRORS

To illustrate the ideas developed in the previous sections, we now consider a

problem that is extensively discussed in the classical literature ( cf. King, 1983, 1987-

88, King and McAleer, 1987, Dastoor and Fisher, ]988, and Burke, Godfrey, and

Tremayne, 1990), but has hitherto not been analysed in the Bayesian framework.

The problem is concerned with testing whether the errors in the regression

model follow a fïrst order autoregressive process, AR(1), as opposed to a moving

average process of the same order, MA(1). Interest in this issue appears to have

been stimulated by the finding that a significant Durbin-Watson ( DW), and more

generally Lagrange Multiplier, statistic can imply the presence of either process (cf.

Breusch, 1978, and Godfrey, 1978).

We consider the model and data used in Chow ( 1983, pp. 53-55) given by

Y, - P~ } ~~b `~rry' `~ (25)

where y, X, and X, are the logarithms of the relative price of automobiles, the

automobile stock per capita, and the real disposable income per capita, respectively.

The data are for the United States for the period 1921-1953, with n-33.

For the model in (25) we let the errnrs be elliptically distributed, as in (1) and
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(2), and specialize V,-V,(n,) in the error dispersion matrix, o'V„ to take one of the

three forms

V, - ((1-n,)Zf„`~1ft-TI;B]
~

~, - (1}n~)'~,-n~ (26)

I; - ~,,,

where O~q„ rt,~l, B- diag(1,0,...,0,1) and A is a tridiagonal matrix whose main

diagonal elements are 2 and whose off diagonal elements are - 1. Further, we can

also obtain that ~ V, ~-(1-q,j)-' and ~ V,~ -(1-n,~")~(1-n,'). It should be noted that

the dispersion structure described by V, arises through an AR(1) process, given by

e,-r),e,.,tu„ while that described by V, arises from the MA(1) process, e, - u,frtzu,.,,

t- 1,...,n, where the nt 1 dimensional vector (uau,,...,u~)' is jointly spherically distribu-

ted with location vector zero, and dispersion matri~c v'h,,. In the case of AR(1) the

initial element ea is implicitly defined as e, - uo ~ 1-~~.

Using results from Subsection 3.1, we obtain the posterior model probabilities

and moments given in Table ], which constitutes a reference case. The prior in (7) is

used with both rI, and q, uniformly distibuted on the unit interval. Prior odds of the

models are taken to be unity.

Note from Table 1 that prior model probabilities are strongly revised by the

data, in favour of the AR(1) specification in M,. Thus, we expect the posterior

moments of (i resulting from mixing models as in Section 4(Proposition 3) to be

similar to those of the favoured model. For comparison, Table 2 reports the findings

when mixing all three models under the same prior specification as in Table 1, i.e.

taking a, - 1~3 for all i. Revision through the data for n, can only occur using M„
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since rt,'s are model-specific. Therefore, overall posterior results for rl, are close to

the ones conditional upon M„ whereas those for rt, are very close to the prior.

Table 1: Posterior results for individual models.

M, M, M,
AR(1) MA(1) white noise

p( M,) 0.333 0.333 0.333
p(M, y,X) 0.932 0.067 8.59e-4

mean ( s.dev) mean ( s.dev) mean ( s.dev)

-1.351 (1.900) -2.938 (1.036) -3.222 (0.813)
p(p ~ y,X,M,) -0.955 (0.145) -0.896 (0.115) -0.902 (0.091)

1.282 (0.299) 1.510 (0.162) 1.556 (0.125)

p(rt, I M,) 0.500 (0.289) 0.500 (0.289)
p(n, I y,X,M,) 0.722 (0.161) 0.529 (0.153)

Although the mixing parameter ~. has no clear interpretation in this example,

we report its posterior results in Table 3 for the sake of completeness. If we assume

p(x)- fp(~l I Ca), the posterior distribution of A collapses to the posterior model

probabilities given in Table 1 for C tending to zero, whereas for large values of C we

essentially reproduce the prior.

Table 2: Posterior results for mixture of models.

mean (s.dev)

-1.460 (1.854)
p( ~ ', y,X) -0.951 (0.143)

1.298 (0.292)

p(,1~) 0.500 (0.289)
P(,1~ I Y.}t) 0.707 (0.182)

p(,1:) 0.500 (0.289)
P(~: I y,}~) 0.502 (0.282)
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Table 3. Prior and posterior moments of ~l.

C-1.Oe-6
mean (s.dev)

C-1
mean ( s.dev)

C-1.Oef6
mean (s.dev)

M, 0.333 (0.471) 0.333 (0.333) 0.333 (4.71e-4)
p(.l) M, 0.333 (0.471) 0.333 (0.333) 0.333 (4.71e-4)

M, 0.333 (0.471) 0.333 (0.333) 0.333 (4.71e-4)

M, 0.932 (5.67e-4) 0.633 (0.269) 0.333 (4.71e-4)
p(x I y,X) M, 0.067 (4.22e-4) 0.200 (0.219) 0.333 (4.71e-4)

M, 8.59e-4(4.08e-4) 0.167 (0.215) 0.333 (4.71e-4)

6. SUMMARY

In this paper we have considered from the Bayesian perspective the problem

of linear elliptical regression models that differ in the covariance structure. We

develop two approaches, a pretest method that involves choosing a model based on

posterior model probabilities, and a pooling approach in which all models are

retained for inference. In the second approach, the data density is defined as a

mixture of elliptical densities with weights that are unknown parameters; the stochas-

tic nature of these weights is shown to be irrelevant for prediction and posterior

inference un the regression parameters.

All calculations are surprisingly easy and prior elicitation can be kept to a

minimum by using a convenient reference case. An example of considerable practical

interest to econometricians is presented to illustrate our findings. Many other cases

of relevance in applied econometrics, though not explicitly discussed here, are covered

by our framework.
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