

# No. 9122

# A BAYESIAN NOTE ON COMPETING CORRELATION STRUCTURES IN THE DYNAMIC LINEAR REGRESSION MODEL

by Siddharta Chib, Jacek Osiewalski and Mark F.J. Steel

May 1991

ISSN 0924-7815

# A BAYESIAN NOTE ON COMPETING CORRELATION STRUCTURES IN THE DYNAMIC LINEAR REGRESSION MODEL

Siddhartha Chib Washington University and University of Missouri, Columbia Jacek Osiewalski Academy of Economics, Kraków

Mark F.J. Steel Tilburg University

A Bayesian posterior odds approach is used to distinguish between different error correlation structures in dynamic linear regression models. We extend the usual framework to general elliptical error distributions and any number of lagged dependent variables and contending correlation hypotheses. In contrast to classical tests, posterior analysis is not fundamentally affected by the dynamic structure of the model, and is very easily performed in a reference prior case. Recent classical results are provided with a Bayesian interpretation, and a small empirical example illustrates the approach.

Acknowledgements: The second author gratefully acknowledges the hospitality of the Center for Economic Research, Tilburg University while the third author was supported by a research fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW) and enjoyed the hospitality of the Academy of Economics, Kraków.

### 1. Introduction

In a recent article, Inder (1990) proposed a test for autocorrelated errors in the linear regression model with one lagged dependent variable among the regressors, thus generalizing King (1985) to dynamic regression models. Although Inder's extension seems somewhat ad hoc, he reports evidence from simulation experiments that favours his test over the widely used h and t tests from Durbin (1970) as well as the Durbin-Watson test.

In this paper we consider a Bayesian posterior odds approach to the question addressed in Durbin (1970) and Inder (1990). In fact, we develop our results within a much more general framework, where we compare m dynamic models (each with q lagged dependent variables) that differ only in their covariance structure. In addition, we allow for general elliptical distributions of the error vector. We show that Bayesian posterior analysis is not fundamentally affected by the dynamic character of the model, and posterior odds are obtained in the same fashion as in Chib et al. (1990), who treat the static case. Indeed, posterior results are based on the likelihood function, the functional form of which is not changed by introducing dynamics. Within a Bayesian framework, the latter will only complicate prediction [see Chow (1973)].

Section 2 describes the Bayesian model, giving rise to the posterior analysis under a reference prior in Section 3. In Section 4 we compare our method with Inder's (1990) in the special case considered by him. An application to Durbin and Watson's (1951) consumption of spirits data in Section 5 illustrates our approach. The final section contains some concluding remarks.

## 2. The Bayesian Model

We consider m dynamic linear regression models (i = 1,...,m)

$$M_{i} : y = Y_{-1}\alpha + X\beta + \varepsilon$$
(1)

1

where  $Y_{-1}$  is an n×q matrix containing lagged values of the n dimensional vector y as well as the necessary initial values  $y_0$ , and X groups k other weakly exogenous variables. The error vector  $\varepsilon$  is assumed to have an n-variate elliptical distribution with location vector 0 and dispersion matrix  $\sigma^2 V_i$ , with  $\sigma^2$  a common scale factor, and  $V_i = V_i(n_i)$  a model specific PDS matrix function of the  $l_i$  dimensional  $n_i$ . The m models thus only differ in the structure of  $V_i$ .

For notational convenience, let  $Z = (Y_{-1} X)$  and  $\gamma' = (\alpha' \beta')$ . As a result of the unitary Jacobian of the transformation from  $\varepsilon$  to y, the data density corresponding to  $M_{i}$  is:

$$p(y|y_0, X, y, \sigma^2, n_i, M_i) = (\sigma^2)^{-\frac{n}{2}} |v_i|^{-\frac{1}{2}}$$

$$g_i[(y - Z_y)'\sigma^{-2}v_i^{-1}(y - Z_y)]. \qquad (2)$$

In (2) the nonnegative function  $\mathbf{g}_{i}[.]$  is such that  $\mathbf{u}^{\frac{n}{2}-1}\mathbf{g}_{i}(\mathbf{u})$  is integrable in  $\mathbb{R}_{+}$ ,  $i = 1, \ldots, \mathbf{m}$ ; see Dickey and Chen (1985). This general class covers many specific multivariate densities, like Normal, Student t or Pearson II. Due to the linearity of the transformation from  $\varepsilon$  to y, the data density still belongs to the elliptical class. Finally, the entire analysis will be conducted conditionally upon  $\mathbf{y}_{0}$ . For alternative treatments of initial values see e.g. Zellner (1971).

In order to complete the Bayesian model, we specify a prior density on the parameters of  $M_i$ :

$$p(r, \sigma^2, n_i) = c_1 \sigma^{-2} p(r) p(n_i),$$
 (3)

a product of the usual improper prior on  $\sigma^2$ , a prior on the common coefficients  $\gamma$ , and a **proper** prior on  $\eta_i$ , with  $c_1 > 0$ .

### 3. Posterior Analysis

The Jeffreys' type prior on  $\sigma^2$  can be shown, as in Osiewalski and Steel (1990), to lead to exactly the same joint density of  $(y, \gamma, n_i)$  as under Normality of the disturbances in (1), namely

$$p(\mathbf{y}, \mathbf{y}, n_{i}|\mathbf{y}_{0}, \mathbf{X}, \mathbf{M}_{i}) = c_{1}\Gamma(\frac{\mathbf{n}-\mathbf{k}-\mathbf{q}}{2}) \pi^{-\frac{\mathbf{n}-\mathbf{k}-\mathbf{q}}{2}} p(\mathbf{y})p(n_{i})$$

$$h_{i}(n_{i})\mathbf{f}_{s}^{\mathbf{k}+\mathbf{q}}(\mathbf{y}|\mathbf{n}-\mathbf{k}-\mathbf{q}, \hat{\mathbf{y}}_{i}, \frac{\mathbf{n}-\mathbf{k}-\mathbf{q}}{SSE_{i}}\mathbf{z}'\mathbf{v}_{i}^{-1}\mathbf{z}), \qquad (4)$$

with  $h_{i}(n_{i}) = |V_{i}|^{-\frac{1}{2}} |Z'V_{i}^{-1}Z|^{-\frac{1}{2}} (SSE_{i})^{-\frac{n-k-q}{2}}$ , (5)

and the (k+q)-variate Student t density appearing in (4) has n-k-q degrees of freedom, location vector  $\hat{\mathbf{y}}_{i} = (Z'V_{i}^{-1}Z)^{-1}Z'V_{i}^{-1}y$  and the precision matrix involves  $SSE_{i} = (y - Z\hat{\mathbf{y}}_{i})'V_{i}^{-1}(y - Z\hat{\mathbf{y}}_{i})$ ; finally, we implicitly assume Z to be of full column rank.

Clearly,  $\gamma$  can be integrated out analytically from (4) if we assume an improper uniform prior in (3)

$$\mathbf{p}(\mathbf{x}) = \mathbf{c}_2. \tag{6}$$

This convenient case will be treated here in some detail, whereas for independent Student t priors on  $\gamma$  the results in Chib et al. (1990) can easily be adapted. Remark that in the context of dynamic models the choice of (6) does not exclude nonstationarity of the process for  $\gamma$ . Imposing stationarity requires restricting the parameter space of  $\alpha$ , which would add q dimensions to the numerical integration in the sequel. Of course, Inder's (1990) procedure does not impose stationarity either.

Under  $M_i$ , the use of (3) and (6) leads to the Student t conditional posterior of  $\gamma$ , given  $n_i$ , implicit in (4), and the following marginal posterior of  $n_i$ :

$$\mathbf{p}(n_{i}|\mathbf{y}, \mathbf{y}_{0}, \mathbf{X}, \mathbf{M}_{i}) = \mathbf{K}_{i}^{-1}\mathbf{h}_{i}(n_{i})\mathbf{p}(n_{i}), \qquad (7)$$

where we assume  $K_i = \int h_i(n_i)p(n_i)dn_i$  to be finite, i = 1, ..., m. Evaluating  $K_i$  only requires  $l_i$  dimensional numerical integration. Assigning prior probability  $p(M_i)$  to the i-th model, the posterior probability is now given by

$$p(M_{i}|y, y_{0}, x) = \frac{p(M_{i})K_{i}}{\underset{j=1}{\overset{\Sigma}{m}}p(M_{j})K_{j}},$$
(8)

since the (improper) predictive densities are  $p(y|y_0, X, M_j) = cK_j$  with the same constant c for all j = 1, ..., m. The Bayes factor  $B_{rs}$  for comparing  $M_r$  and  $M_s$  is equal to  $K_r/K_s$  leading to the posterior odds  $[p(M_r)/p(M_s)] \times B_{rs}$ . Note that  $B_{rs}$  could take any value if we would allow  $p(n_i)$  in (7) to be improper.

If the loss structure penalizes all incorrect decisions equally heavy, the Bayesian pretest procedure amounts to choosing the model with highest posterior model probability. In order to avoid pretesting, we can use mixtures of data densities, as explained in Chib et al. (1990).

## 4. Comparison with Inder's Test for Autocorrelated Disturbances

In the particular case where m = 2, q = 1 and the errors either follow a stationary AR(1) process or are uncorrelated, Inder (1990) proposes a modification of King's (1985) test for AR(1) in the static regression model. He suggests replacing the dynamic coefficient  $\alpha$  by its OLS estimate obtained from (1), say

$$\mathbf{a} = (\mathbf{y}_{-1}' \, \bar{\mathbf{P}}_{\mathbf{X}} \, \mathbf{y}_{-1})^{-1} \, \mathbf{y}_{-1}' \, \bar{\mathbf{P}}_{\mathbf{X}} \, \mathbf{y}, \tag{9}$$

where we define

$$\bar{P}_{w} = I_{n} - W(W'W)^{-1}W', \qquad (10)$$

and  $Y_{-1}$  is now a vector denoted by  $y_{-1}$ . Inder's test statistic is then given by

$$s(a, n_{1}^{*}) = \frac{(y - y_{-1}a)' \bar{P}_{QX}Q(y - y_{-1}a)}{(y - y_{-1}a)' \bar{P}_{X}(y - y_{-1}a)},$$
(11)

where Q'Q =  $V_1^{-1}(n_1^*)$ , and the AR(1) correlation structure is generally given by

$$V_1(n_1) = [(1-n_1)^2 I_n + n_1 A - n_1^2 B]^{-1},$$
 (12)

with  $n_1 \in (0,1)$ , B = Diag(1,0,...,0,1), and A is a tridiagonal matrix with 2 on the main diagonal and -1 on the other two diagonals. Contrary to the Bayesian approach in Section 3 where  $n_1$  is integrated out, Inder tests against a specific alternative by choosing a particular value  $n_1 = n_1^*$ . In the static case (q = 0) this fact results in the equivalence of King's (1985) test statistic and the Bayes factor (BF) conditional on  $n_1 = n_1^*$ , given by  $h_1(n_1^*)/h_2$ , as explained in Chib et al. (1990). However, the extension to dynamic models deprives Inder's test statistic in (11) of the same Bayesian interpretation. In particular, the conditional BF is from (5) with  $V_2 = I_n$ 

$$\frac{h_1(n_1^*)}{h_2} = \frac{|Q'Q|^{\frac{1}{2}} |Z'Q'QZ|^{-\frac{1}{2}}}{|Z'Z|^{-\frac{1}{2}}} \left( \frac{y'Q'\bar{P}_{QZ}Qy}{y'\bar{P}_{Z}y} \right)^{-\frac{n-k-1}{2}},$$
(13)

where elements of y now appear through Z as well. The dynamic character of the model thus precludes a direct link with a test statistic of the simple ratio form in (11). In addition, the conditional BF in (13), contrary to (11), uses all regressors in the same fashion, and does not distinguish between lagged y's and other regressors. Indeed, for posterior inference the form of the likelihood suffices, and the sampling properties of the actual data density are entirely irrelevant.

If we condition on  $\alpha$  as well, a Bayesian interpretation of (11) can be provided, as the conditional BF given  $\alpha = \alpha^*$  and  $\eta_1 = \eta_1^*$  takes the form

$$\frac{|\mathbf{Q}'\mathbf{Q}|^{\frac{1}{2}}|\mathbf{X}'\mathbf{Q}'\mathbf{Q}\mathbf{X}|^{-\frac{1}{2}}}{|\mathbf{X}'\mathbf{X}|^{-\frac{1}{2}}}\left[\mathbf{s}(\alpha^*, \eta_1^*)\right]^{-\frac{n-k}{2}},\tag{14}$$

where elements of y now only appear through

$$s(\alpha^{*}, \eta_{1}^{*}) = \frac{(y - y_{-1} \alpha^{*})' Q' \bar{P}_{QX} Q(y - y_{-1} \alpha^{*})}{(y - y_{-1} \alpha^{*})' \bar{P}_{X} (y - y_{-1} \alpha^{*})}.$$
(15)

In the static case where  $\alpha^* = 0$ , (15) reduces to Kings (1985) statistic. Inder's (1990) suggestion in (11) for dynamic models amounts to evaluating (15) at the OLS value a for  $\alpha^*$ . While a is the posterior mean and mode of  $\alpha$  given  $V_2 = I_n$  it can clearly be far from the posterior mean and modal values of  $\alpha$  under the AR(1) alternative.

From the Bayesian perspective adopted here, we naturally suggest to base model comparison on the unconditional BF  $B_{12}$ , which only requires univariate numerical integration, and fully takes the uncertainty concerning both  $\alpha$  and  $\eta_1$  into account. Clearly, this approach can trivially cope with any number of lagged y's (general q)<sup>1)</sup> in the dynamic regression models (1) and is immediately suited to compare more than two alternatives at the same time (general m), leading in a natural fashion to finite mixtures of contending models [see Chib et al. (1990)].

### 5. An Empirical Example

As an illustration of the ideas developed in the paper, we consider the application found in Durbin and Watson (1951). The example deals with the annual consumption of spirits in the United Kingdom from 1870-1938. The explanatory variables are per-capita income and the price of spirits (deflated by a cost-of-living index). The model, which includes a constant, is linear in logs. Although it is possible to deal with many different contending correlation structures, consider the choice between  $V_1(\eta_1)$  as given in (12), and  $V_2 = I_n$ . The prior information is summarized by (3) and (6) with  $\eta_1 \sim$  Uniform(0,1). The posterior results which are provided in Table 1, clearly indicate that the AR(1) process is strongly supported by the data; the BF in favour of  $V_1$  is 9.46 \* 10<sup>13</sup>.

Since we are proposing the use of unconditional BF's we point out that for this data set the BF in its conditional version, can be dramatically different. For example, if we condition on  $\eta_1^* = 0.5$ , the prior mean of  $\eta_1$ , the BF is reduced to 348730. Finally, if we evaluate the BF in (14) at  $\alpha^* = 0.73$ , the OLS value, and let  $\eta_1^* = 0.5$ , the BF drops to 1468. Although in this case the evidence nonetheless supports the AR(1) process,<sup>2)</sup> the enormous difference between the conditional and unconditional BF deserves attention.

Pursuing this example a bit further, we redo the analysis with the variables specified in first differences (denoted by tildes). Differencing seems appropriate for this data because the posterior density of  $n_1$  monotonically increases over (0,1). Again, we compare uncorrelated ( $M_2$ ) and AR(1) ( $M_1$ ) error covariance structures. Now using the reference prior with  $n_1 \sim$  Uniform(-1,1), we find that the BF in favour of the AR(1) process is 0.25. Table 2 presents some results under individual models as well as when the models are mixed with the posterior probabilities.

### 6. Conclusion

This paper has proposed the use of a posterior odds approach to distinguish between contending correlation structures in dynamic linear regression models. We show that, contrary to classical tests, posterior analysis is not fundamentally affected by the dynamic structure of the model. In addition, the framework provides an effective means of dealing with more than one lagged dependent variable, and more than two contending models, thus relaxing the set-up of Inder (1990). In several cases of interest, the calculations are quite straightforward and may be readily implemented in applied work.

#### Footnotes

1) Of course, we require Z to remain of full column rank, so that q < n-k. 2) Also, Inder's s(0.73, 0.5) = 0.8429, which rejects  $M_2$  at 5%.

|                                              | M1                                         | M2                                         |
|----------------------------------------------|--------------------------------------------|--------------------------------------------|
| p(M <sub>i</sub> )                           | 0.5                                        | 0.5                                        |
| $p(M_{i} y,y_{0},X)$                         | 1.0000                                     | 0.0000                                     |
|                                              | mean (s.dev.)                              | mean (s.dev.)                              |
| $p(\alpha y,y_0,X,M_i)$                      | 0.07 (0.08)                                | 0.73 (0.07)                                |
| $p(\beta y,y_0,X,M_i)$ constant income price | 2.22 (0.54)<br>0.66 (0.17)<br>-0.90 (0.09) | 1.25 (0.36)<br>0.01 (0.07)<br>-0.38 (0.09) |
| $p(n_1 M_1)$                                 | 0.50 (0.29)                                | -                                          |
| $p(n_1 y,y_0,X,M_1)$                         | 0.99 (0.01)                                | -                                          |

Table 1. Posterior results for levels models.

Table 2. Posterior results for models in first differences.

|                                                                                                            |        | M <sub>1</sub> | M2            | mixture M <sub>12</sub> |
|------------------------------------------------------------------------------------------------------------|--------|----------------|---------------|-------------------------|
| p(M <sub>i</sub> )                                                                                         |        | 0.5            | 0.5           | -                       |
| $p(M_i   \tilde{y}, \tilde{y}_0, \tilde{X})$                                                               |        | 0.20           | 0.80          | -                       |
|                                                                                                            |        | mean (s.dev.)  | mean (s.dev.) | mean (s.dev.)           |
| $p(\alpha   \tilde{y}, \tilde{y}_0, \tilde{X}, M_i)$                                                       |        | 0.09 (0.09)    | 0.06 (0.08)   | 0.07 (0.08)             |
| $p(\beta \tilde{y},\tilde{y}_{0},\tilde{X},M_{i}) \begin{cases} \text{income} \\ \text{price} \end{cases}$ | income | 0.69 (0.16)    | 0.69 (0.16)   | 0.69 (0.16)             |
|                                                                                                            | price  | -0.89 (0.09)   | -0.89 (0.09)  | -0.89 (0.09)            |
| $p(n_1   M_1)$                                                                                             |        | 0.00 (0.57)    | -             | -                       |
| $p(n_1   \tilde{y}, \tilde{y}_0, \tilde{X}, M_1)$                                                          |        | -0.11 (0.14)   | -             | -                       |

### References

- Chib, S., Osiewalski, J. and M.F.J. Steel, "Regression Models under Competing Covariance Matrices: A Bayesian Perspective," CentER Discussion Paper No. 9063 (Tilburg University, 1990).
- Chow, G.C., "Multiperiod Predictions from Stochastic Difference Equations by Bayesian Methods," <u>Econometrica</u> 41 (1973), 109-118.
- Dickey, J.M. and C.H. Chen, "Direct Subjective Probability Modelling Using Ellipsoidal Distributions," in J.M. Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith, eds., <u>Bayesian Statistics 2</u> (Amsterdam: North Holland, 1985).
- Durbin, J., "Testing for Serial Correlation in Least Squares Regression when some of the Regressors are Lagged Dependent Variables," <u>Econometrica</u> 38 (1970), 410-421.
- and G.S. Watson, "Testing for Serial Correlation in Least Squares Regression II," <u>Biometrika</u> 38 (1951), 159-178.
- Inder, B.A., "A New Test for Autocorrelation in the Disturbances of the Dynamic Linear Regression Model," <u>International Economic Review</u> 31 (1990), 341-354.
- King, M.L., "A Point Optimal Test for Autoregressive Disturbances," <u>Journal of Econometrics</u> 27 (1985), 21-37.
- Osiewalski, J. and M.F.J. Steel, "Robust Bayesian Inference in Elliptical Regression Models," CentER Discussion Paper No. 9032 (Tilburg University, 1990).
- Zellner, A., <u>An Introduction to Bayesian Inference in Econometrics</u> (New York: Wiley 1971).

## Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

| No.  | Author(s)                                             | Title                                                                                                                                       |
|------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 9005 | Th. ten Raa and<br>M.F.J. Steel                       | A Stochastic Analysis of an Input-Output<br>Model: Comment                                                                                  |
| 9006 | M. McAleer and<br>C.R. McKenzie                       | Keynesian and New Classical Models of<br>Unemployment Revisited                                                                             |
| 9007 | J. Osiewalski and<br>M.F.J. Steel                     | Semi-Conjugate Prior Densities in Multi-<br>variate t Regression Models                                                                     |
| 9008 | G.W. Imbens                                           | Duration Models with Time-Varying<br>Coefficients                                                                                           |
| 9009 | G.W. Imbens                                           | An Efficient Method of Moments Estimator<br>for Discrete Choice Models with Choice-Based<br>Sampling                                        |
| 9010 | P. Deschamps                                          | Expectations and Intertemporal Separability<br>in an Empirical Model of Consumption and<br>Investment under Uncertainty                     |
| 9011 | W. Güth and<br>E. van Damme                           | Gorby Games - A Game Theoretic Analysis of<br>Disarmament Campaigns and the Defense<br>Efficiency-Hypothesis                                |
| 9012 | A. Horsley and<br>A. Wrobel                           | The Existence of an Equilibrium Density<br>for Marginal Cost Prices, and the Solution<br>to the Shifting-Peak Problem                       |
| 9013 | A. Horsley and<br>A. Wrobel                           | The Closedness of the Free-Disposal Hull of a Production Set                                                                                |
| 9014 | A. Horsley and<br>A. Wrobel                           | The Continuity of the Equilibrium Price<br>Density: The Case of Symmetric Joint Costs,<br>and a Solution to the Shifting-Pattern<br>Problem |
| 9015 | A. van den Elzen,<br>G. van der Laan and<br>D. Talman | An Adjustment Process for an Exchange<br>Economy with Linear Production Technologies                                                        |
| 9016 | P. Deschamps                                          | On Fractional Demand Systems and Budget<br>Share Positivity                                                                                 |
| 9017 | B.J. Christensen<br>and N.M. Kiefer                   | The Exact Likelihood Function for an<br>Empirical Job Search Model                                                                          |
| 9018 | M. Verbeek and<br>Th. Nijman                          | Testing for Selectivity Bias in Panel Data<br>Models                                                                                        |
| 9019 | J.R. Magnus and<br>B. Pesaran                         | Evaluation of Moments of Ratios of Quadratic<br>Forms in Normal Variables and Related<br>Statistics                                         |
| 9020 | A. Robson                                             | Status, the Distribution of Wealth, Social<br>and Private Attitudes to Risk                                                                 |

| No.  | Author(s)                              | Title                                                                                                                              |
|------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 9021 | J.R. Magnus and<br>B. Pesaran          | Evaluation of Moments of Quadratic Forms in<br>Normal Variables                                                                    |
| 9022 | K. Kamiya and<br>D. Talman             | Linear Stationary Point Problems                                                                                                   |
| 9023 | W. Emons                               | Good Times, Bad Times, and Vertical Upstream Integration                                                                           |
| 9024 | C. Dang                                | The D <sub>2</sub> -Triangulation for Simplicial Homotopy<br>Algorithms for Computing Solutions of<br>Nonlinear Equations          |
| 9025 | K. Kamiya and<br>D. Talman             | Variable Dimension Simplicial Algorithm for Balanced Games                                                                         |
| 9026 | P. Skott                               | Efficiency Wages, Mark-Up Pricing and Effective Demand                                                                             |
| 9027 | C. Dang and<br>D. Talman               | The D <sub>1</sub> -Triangulation in Simplicial Variable<br>Dimension Algorithms for Computing Solutions<br>of Nonlinear Equations |
| 9028 | J. Bai, A.J. Jakeman<br>and M. McAleer | Discrimination Between Nested Two- and Three-<br>Parameter Distributions: An Application to<br>Models of Air Pollution             |
| 9029 | Th. van de Klundert                    | Crowding out and the Wealth of Nations                                                                                             |
| 9030 | Th. van de Klundert<br>and R. Gradus   | Optimal Government Debt under Distortionary<br>Taxation                                                                            |
| 9031 | A. Weber                               | The Credibility of Monetary Target Announce-<br>ments: An Empirical Evaluation                                                     |
| 9032 | J. Osiewalski and<br>M. Steel          | Robust Bayesian Inference in Elliptical<br>Regression Models                                                                       |
| 9033 | C. R. Wichers                          | The Linear-Algebraic Structure of Least Squares                                                                                    |
| 9034 | C. de Vries                            | On the Relation between GARCH and Stable Processes                                                                                 |
| 9035 | M.R. Baye,<br>D.W. Jansen and Q. Li    | Aggregation and the "Random Objective"<br>Justification for Disturbances in Complete<br>Demand Systems                             |
| 9036 | J. Driffill                            | The Term Structure of Interest Rates:<br>Structural Stability and Macroeconomic Policy<br>Changes in the UK                        |
| 9037 | F. van der Ploeg                       | Budgetary Aspects of Economic and Monetary<br>Integration in Europe                                                                |
| 9038 | A. Robson                              | Existence of Nash Equilibrium in Mixed<br>Strategies for Games where Payoffs Need not<br>Be Continuous in Pure Strategies          |

| No.  | Author(s)                               | Title                                                                                                                                |
|------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 9039 | A. Robson                               | An "Informationally Robust Equilibrium" for<br>Two-Person Nonzero-Sum Games                                                          |
| 9040 | M.R. Baye, G. Tian<br>and J. Zhou       | The Existence of Pure-Strategy Nash<br>Equilibrium in Games with Payoffs that are<br>not Quasiconcave                                |
| 9041 | M. Burnovsky and<br>I. Zang             | "Costless" Indirect Regulation of Monopolies<br>with Substantial Entry Cost                                                          |
| 9042 | P.J. Deschamps                          | Joint Tests for Regularity and<br>Autocorrelation in Allocation Systems                                                              |
| 9043 | S. Chib, J. Osiewalski<br>and M. Steel  | Posterior Inference on the Degrees of Freedom<br>Parameter in Multivariate-t Regression Models                                       |
| 9044 | H.A. Keuzenkamp                         | The Probability Approach in Economic Method-<br>ology: On the Relation between Haavelmo's<br>Legacy and the Methodology of Economics |
| 9045 | I.M. Bomze and<br>E.E.C. van Damme      | A Dynamical Characterization of Evolution-<br>arily Stable States                                                                    |
| 9046 | E. van Damme                            | On Dominance Solvable Games and Equilibrium Selection Theories                                                                       |
| 9047 | J. Driffill                             | Changes in Regime and the Term Structure:<br>A Note                                                                                  |
| 9048 | A.J.J. Talman                           | General Equilibrium Programming                                                                                                      |
| 9049 | H.A. Keuzenkamp and<br>F. van der Ploeg | Saving, Investment, Government Finance and<br>the Current Account: The Dutch Experience                                              |
| 9050 | C. Dang and<br>A.J.J. Talman            | The D <sub>1</sub> -Triangulation in Simplicial Variable<br>Dimension Algorithms on the Unit Simplex for<br>Computing Fixed Points   |
| 9051 | M. Baye, D. Kovenock<br>and C. de Vries | The All-Pay Auction with Complete Information                                                                                        |
| 9052 | H. Carlsson and<br>E. van Damme         | Global Games and Equilibrium Selection                                                                                               |
| 9053 | M. Baye and<br>D. Kovenock              | How to Sell a Pickup Truck: "Beat-or-Pay"<br>Advertisements as Facilitating Devices                                                  |
| 9054 | Th. van de Klundert                     | The Ultimate Consequences of the New Growth<br>Theory; An Introduction to the Views of M.<br>Fitzgerald Scott                        |
| 9055 | P. Kooreman                             | Nonparametric Bounds on the Regression<br>Coefficients when an Explanatory Variable is<br>Categorized                                |
| 9056 | R. Bartels and<br>D.G. Fiebig           | Integrating Direct Metering and Conditional<br>Demand Analysis for Estimating End-Use Loads                                          |

| No.  | Author(s)                                | Title                                                                                                                                                        |
|------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9057 | M.R. Veall and<br>K.F. Zimmermann        | Evaluating Pseudo-R <sup>2</sup> 's for Binary Probit<br>Models                                                                                              |
| 9058 | R. Bartels and D.G. Fiebig               | More on the Grouped Heteroskedasticity<br>Model                                                                                                              |
| 9059 | F. van der Ploeg                         | Channels of International Policy Transmission                                                                                                                |
| 9060 | H. Bester                                | The Role of Collateral in a Model of Debt<br>Renegotiation                                                                                                   |
| 9061 | F. van der Ploeg                         | Macroeconomic Policy Coordination during the<br>Various Phases of Economic and Monetary<br>Integration in Europe                                             |
| 9062 | E. Bennett and<br>E. van Damme           | Demand Commitment Bargaining: - The Case of Apex Games                                                                                                       |
| 9063 | S. Chib, J. Osiewalski<br>and M. Steel   | Regression Models under Competing Covariance<br>Matrices: A Bayesian Perspective                                                                             |
| 9064 | M. Verbeek and<br>Th. Nijman             | Can Cohort Data Be Treated as Genuine Panel Data?                                                                                                            |
| 9065 | F. van der Ploeg<br>and A. de Zeeuw      | International Aspects of Pollution Control                                                                                                                   |
| 9066 | F.C. Drost and<br>Th. E. Nijman          | Temporal Aggregation of GARCH Processes                                                                                                                      |
| 9067 | Y. Dai and D. Talman                     | Linear Stationary Point Problems on Unbounded Polyhedra                                                                                                      |
| 9068 | Th. Nijman and<br>R. Beetsma             | Empirical Tests of a Simple Pricing Model for Sugar Futures                                                                                                  |
| 9069 | F. van der Ploeg                         | Short-Sighted Politicians and Erosion of<br>Government Assets                                                                                                |
| 9070 | E. van Damme                             | Fair Division under Asymmetric Information                                                                                                                   |
| 9071 | J. Eichberger,<br>H. Haller and F. Milne | Naive Bayesian Learning in 2 x 2 Matrix<br>Games                                                                                                             |
| 9072 | G. Alogoskoufis and<br>F. van der Ploeg  | Endogenous Growth and Overlapping Generations                                                                                                                |
| 9073 | K.C. Fung                                | Strategic Industrial Policy for Cournot and<br>Bertrand Oligopoly: Management-Labor<br>Cooperation as a Possible Solution to the<br>Market Structure Dilemma |
| 9101 | A. van Soest                             | Minimum Wages, Earnings and Employment                                                                                                                       |
| 9102 | A. Barten and<br>M. McAleer              | Comparing the Empirical Performance of<br>Alternative Demand Systems                                                                                         |

| No.  | Author(s)                                          | Title                                                                                                 |
|------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 9103 | A. Weber                                           | EMS Credibility                                                                                       |
| 9104 | G. Alogoskoufis and<br>F. van der Ploeg            | Debts, Deficits and Growth in Interdependent<br>Economies                                             |
| 9105 | R.M.W.J. Beetsma                                   | Bands and Statistical Properties of EMS<br>Exchange Rates                                             |
| 9106 | C.N. Teulings                                      | The Diverging Effects of the Business Cycle<br>on the Expected Duration of Job Search                 |
| 9107 | E. van Damme                                       | Refinements of Nash Equilibrium                                                                       |
| 9108 | E. van Damme                                       | Equilibrium Selection in 2 x 2 Games                                                                  |
| 9109 | G. Alogoskoufis and<br>F. van der Ploeg            | Money and Growth Revisited                                                                            |
| 9110 | L. Samuelson                                       | Dominated Strategies and Commom Knowledge                                                             |
| 9111 | F. van der Ploeg and<br>Th. van de Klundert        | Political Trade-off between Growth and<br>Government Consumption                                      |
| 9112 | Th. Nijman, F. Palm<br>and C. Wolff                | Premia in Forward Foreign Exchange as<br>Unobserved Components                                        |
| 9113 | H. Bester                                          | Bargaining vs. Price Competition in a Market<br>with Quality Uncertainty                              |
| 9114 | R.P. Gilles, G. Owen<br>and R. van den Brink       | Games with Permission Structures: The<br>Conjunctive Approach                                         |
| 9115 | F. van der Ploeg                                   | Unanticipated Inflation and Government<br>Finance: The Case for an Independent Common<br>Central Bank |
| 9116 | N. Rankin                                          | Exchange Rate Risk and Imperfect Capital<br>Mobility in an Optimising Model                           |
| 9117 | E. Bomhoff                                         | Currency Convertibility: When and How? A Contribution to the Bulgarian Debate!                        |
| 9118 | E. Bomhoff                                         | Stability of Velocity in the G-7 Countries: A<br>Kalman Filter Approach                               |
| 9119 | J. Osiewalski and<br>M. Steel                      | Bayesian Marginal Equivalence of Elliptical<br>Regression Models                                      |
| 9120 | S. Bhattacharya,<br>J. Glazer and<br>D. Sappington | Licensing and the Sharing of Knowledge in<br>Research Joint Ventures                                  |
| 9121 | J.W. Friedman and<br>L. Samuelson                  | An Extension of the "Folk Theorem" with<br>Continuous Reaction Functions                              |
| 9122 | S. Chib, J. Osiewalski<br>and M. Steel             | A Bayesian Note on Competing Correlation<br>Structures in the Dynamic Linear Regression<br>Model      |

