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1. INTRODUCTION

In regression analysis it is usually imporCant to study the consequences of

non-Normal error dístributions. The early work of Zellner (1976) shows that the

multivariate-t (MVt) distribution provides a useful alternative to the

multivariate Normal (MVN). The fact that several distributions, including the

MVt, can be expressed as scale mixtures of the MVN has been exploíted ín some

recent studies. See Phillips (1988), Chib, Tiwari and Jammalamadaka (1988),

Osiewalskí (1990), Osiewalski and Steel (1990), and the references therein. As

a result much is now known about the robustness of inferences to departures from

the MVN error distribution. In the Bayesian context, for example, it has been

shown that under some restrictions on the prior, the marginal posterior of the

regression parameter, ~, is unaffected by the MVt assumption. This is the

conclusion of Zellner (1976), generalízed further by Chib et al. (1988) and

Osiewalski (1990). Other invaríance results are also obtained in the papers

cíted above.

Most of the papers that have adopted the MVt framework have made one

important assumption, i.e., the degrees of freedom, v, of the MVt error

dístribution is known. If this assumption is relaxed, the maximum likelihood

method cannot be used to estimate v(cf. Zellner, 1976). However, a method of

moments escimator does exíst, and has been províded by Singh (1988).

In this paper we pursue the unknown v from an entirely Bayesian standpoint

and show that the prior-posterior analysis for v must proceed with some care.

For example, if we adopt the usual Jeffreys' prior for the error precision, r2,

and exclude príor links between v and the other parameters of the model, the

posterior of v is the same as the prior, for any data. In fact, the same

outcome is obtained for some other priors. Thus, it becomes necessary to defíne

classes of priors for which the posterior ís different from the prior. Three
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useful families of priors are provided and it is shown that the updated moments

of v can usually be extracted by bivariate numerical integration.

A few ímportant points should be noted. For the most part, the analysis

focuses on v, deferring the implications of our study for the posteriors of ~

and r2 to a companion paper. Next, the results are derived under fairly weak

restrictions for a general nonlinear model wíth an unknown covariance matrix.

Finally, some comments about the notation that is used. The symbol p is

used generically to denote density functions whether they be marginal, joint or

conditional. Next, if w- Nn(~,E), a n-variate Normally distributed random

variable with mean u and covariance E, we denote its pdf by fN(w~~a,E) where the

dimension of w índícates that this is a n-variate pdf. Similarly, if w-

MVt (v,p,E), a n-varíate t distributíon with degrees of freedom v, location ~a,n

and dispersíon E, its pdf is fT(w~v,p,E). Conditional independence is denoted

by a~b~c, and is read "a is independent of b gíven c."

2. MAIN RESULTS

2.1 MODEL AND PRELIMINARIES

Consider the (linear or nonlinear) scale mixture of Normals regression

model in wtiich a n-vector of observations y satisfies

y - h(X;6) t f,

f - ~6(z,~)u, uIX.Q,v,r2z,~ - Nn(ulU,r-Z~(X,n)) , (2.1)

where X: nxr is a(possibly stochastic) set of regressors, ~ is the regression

coefficient vector, h(X,~) is a vector function of (X,~), and f is an

ellíptically distributed error vector which, given (X,~,n,r2,~,z), is

distributed as a n-variate normal. More specifically, we make the following



f

assumptíons about the quantities in (2.1):

AL) The parameter space of ro - (~,~,r2,v) -(B,r2,v) ís C1 - B x H x R} x N,

where B~ Rk, H~ Rq, and N~ Ri.

A2) h(X,~) : n x 1 is a known function of X and Q c S.

A3) V(X,p) : n x n is a positive definite matrix, and a known matrix function

of X and p c H.

A4) z is a posítive random variable with conditional distributíon, G(z~w) with

density p(z~~).

AS) ~,(z,v) is positive and continuously differentiable wrt z and v.

A6) The prior density p(~,) is such that p(y~X) - f p(y~X,~,z)p(z~m)p(m)dzdm ~

m, where p(y~X,~,z), the conditional pdf of y, is given in (2.3).

A7) X is a random matrix such that the joint densíty p(X,z,~) factorízes as

P(X)P(z~~).

It is importan[ to emptiasize the general nature of assumptions A1-A7. For

example, we can obtain the model considered in Jammalamadaka, Tiwari and Chib

(1987), which we will refer to as the Iinear spherical model, simply by letting

A2') h(X,~) - X~, and

A3') V(X,q) - In, (the identity matrix of order n), so that B-~.

On the other hand, assumption A4 is satisfíed for a variety of distributions

including those wíth point masses. Of course, the implied sampling distribution

of y is a scale mixture of Normals with pdf derived as

P(Y~X.~) - J PíYIX.~,z)dGíz~~), (2.2)

where
P(YIX,~,z) - fN(Ylh(X,~),r-2~6(z,Y)2V(X,n)). (2.3)
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From (2.2) and ( 2.3) we can secure the multívaríate-t (MVt) dístributíon for y

if we specialize assumptions A4 and AS to

A4') z~~ - X2, the chi-squared distribution with v degrees of freedom, and v e
v

R} (ie., Q- 1 and N- R}).

AS') ~G(z,~) - (zIv) 1~2, v ~ 0.

It can be deduced that under A4' and AS' the sampling distribution is given by

P(YIX,~) - f,í.(Yl~,h(X.A),r-2V(X,n)), (2.4)

which is a non-linear, elliptical version of the model considered in Zellner

(1976). Next, the differentiability requirement in AS is imposed to ensure that

the reparameterizationl

(r2,z,~) y (~2.z,~), ~2 - r2~(z,~) 2, (2.5)

has a well defined Jacobian given by r~(z,v)2. It follows that if the joint

density of (r2,z,v) given B is p(r2,z,v~B), then the joint density of (~2,z,v)

given B is,

P(~2,z,~IB) - ~6(z,~)2 P(r2,z.~IB), (2.6)

wliere the density at the r.h.s. is evaluated at r2 -~(z,v)2~2. The role of A6

is tu ensi.~rr~ rhat rhe post~-rlor of W ís proper. Fínally, AssumpCíon A7, whích

allows for random regressors, serves to make posterior inference on rv

independent of the distribution of X.

1 For v known, the transformation (r2,z) y(~2,z) appeared in Jammalamadaka
et al. (1987), and it proved very clarifying for both posterior and predíctíve
analyses in Osíewalski (1990).
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2.2 PRIOR-POSTERIOR ANALYSIS: PROPER PRIORS

The general problem is concerned with the prior-posterior analysis for ~cN

in model (2.1) when assumptions A1-A7 hold. By Bayes theorem, the posterior of

v has density gíven by

P(~[Y,X) ~ f P(~[Y,X)dBdr2 ,

where

P(w~Y,X) - J P(Y,z,w~X)dz~.lP(Y.z,~,[X)d~dz ,

is the posterior of ~~ (B,r2,v), and

P(Y,z,~r~X) - P(ylz.~,X) P(zl~) P(~) . (2.7)

is the joint density of y, z, ~, given X. We will refer to (2.7) as the

complete Bayesian model. In this section, our plan is to provide conditíons

under which the posterior of v, p(v[y,X), is the same as the prior, p(v). We

restrict atcention to priors of ~ that are proper.

We begin by noting Chat (2.3) and (2.5) allow us to conclude that y and

(z.v) are conditionally independent given X, B and ~2:

Y~ (z,~)~X,B,m2 .

lt also ensues from A7 and (2.5) that

X~(8,~2,z,v).

(2.8)

(2.9)

The fundamental properties of conditional independence [see for e.g. Dawid

(1979), and Mouchart and Rolin (1984)] enable us to infer that the pair of

independence conditíons (2.8) and (2.9) imply that y~v~X,B,~2 and X~v~B,m2.

This in turn implies that v is índependent of the data given (B,~2), í.e.,
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From (2.10) we can observe the fundamental point that íf v and (B,m2) are

índependent, then (X,y) and ~ are unconditionally independent, and the marginal

posterior of v is identical to its marginal prior. Thus, in this case the data

cannot modify our .prior opiníons about v.2 We summarize this fact in the

following result which provides the principal sufficient condition for the

impossíbility of updating the prior of v.

THEOREM 1. Consider (2.1) under Assumptions A1-A7. Suppose that

~~(B~m2) , (2.11)

where m2 is defined in (2.3); then,

~~(Y.X) . (2.12)

PROOF: As we have argued, (2.10) follows from the hypothesis. However,

(2.10) and (2.11) are (jointly) equívalent to v~(y,X,B,m2). This leads to the

conclusion stated in (2.12). The proof is completed. p

From Theorem 1 we can obtain a simple condition that is stronger than (2.11) but

perhaps easier to check.

COROLLARY 1. If (z,v) ~ ( B,m2) ,

then v ll (y,X) .

(2.13)

It is important to remack that Theorem 1 holds under very weak restrictíons

2 A general analysis, though in terms of densities, can be found in Dreze
and Richard (1983).



on the distribution of z(cf., assumption A4). In the rest of the paper,

however, wc, confine our attention to pdfs of z, p(z~B,r2,v), that are defíned

wrt the Lebesgue measure. This is because our leading interest ís in

multívariate t dístributions, and these are continuous scale míxtures of

Normals.

In order to illustrate situatíons where Theorem 1 holds, i.e., where the

prior of v is not updated (under proper pdf's) due to independence between ~ and

(B,~Z), we consider two regression models with MVt errors. The first example,

whích is presented in Corollary 2, is based on a generalization of the model and

prior used in Jammalamadaka et al (1987); see also Osiewalski (1990) and

Osiewalski and Steel (1990, Section 3). The reader can check (by applying

~2.2)), that under the hypotheses of Corollary 2, the distríbution of y is MVt

although the precision matrix of y depends on r2 and B in a very complicated

way, and the degrees-of-freedom parame[er (mtv) is functionally related to the

hyperpazameter m of the conditional prior p(rz~B,v). In the second example,

which forms Corollary 3, we appraise the more familiar MVt sampling model given

in (2.4).

GOROLLARY 2. In (2.1), suppose A1-A3, AS', A6 and A7 hold. If

(i) P(z~B,r2,~) - fC(z~(mtv)~z,{vtr2d(B)~2~1),

(lí) P(r21B~~) ~ fIB(rz~ Z.Z,d~B));

p(B,v) - p(B) p(v);

where m is a posítive constant, d(B) is some known positive function of B, and

fC and fIB(.~., ,.) denote the gamma pdf, and the three-parameter inverted beta
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H

PROOF: With the change of variable ~Z - r2(~i(z,v)(-2 - r2(i), standard

calculations show that p(z[B,~2,v) - p(z[v) - fC(z[2, 2), and p(~2[B,i) -

P(m2IB) - fC(~212.d(2)). Thus, P(B,~2~~) - P(B) f0(~212.d(2)) P(v). and the

condition (2.11) of Theorem 1 ís fulfilled. (Even the stronger conditíon (2.13)

ís met here.) 0

COROLLARY 3. In (2.1), under A1-A3, A4', AS', A6 and A7 (these lead to
(2.4)), suppose that

(i) P(T2~B,~) - fB(r212.YZm,d~B)) .

P(B.~) - P(B) P(v) ~

(iii) p(v) - 0 if v 5 m,

where m í; a positive constant, d(B) ís some known positive function of B, and
2 m v-m ~

fB(' ~2' 2'd(B)) denotes the beta pdf with the parameters (2,~2m) and nonzero
over the interval (O,d~B)).4 Then v f~ (y,X).

PROOF: From the parametrization, ~2 - rz~(z,v) 2-,Zi , it follows thatv
P(~zIB.~) - P(~ZIB) - fC(~2I2.d(2))~ and 2 2 v-m 1

P(z[B,~ ~~) - fC(z-~ d(B)IZ,2) .

3 The three-parameter inverted beta (or beta prime) density on w~0 witha,b,c~0 [see 2ellner (1971, p. 376)] is

fIB(w[a b c) - c-1B(a,b) (w~c)b-1 (1c)-(atb) ,
where B(a,b) - I'(afb)~(I'(a)I'(b)) ís the Be[a functíon. For a-v2~2, b-v1~2,
c-v2~v1, we obtaín the F density with vl,v2 degrees of freedom.

4 A beta density on we(O,c) wíth a,b~0 ís given by

fB(wla~b~c) - c-1B(a.b) (C)a-1(1 C)b-1
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The last density i s only nonzero when z ~~2d(B), i.e., in the support of r2,

and it also implicitly imposes the other prior constraint that v~ m. Hence,
2 2 m d(B)

p(B,~ ,v) - p(B) fC(~ ~2, 2) p(v), and condition (2.11) of Theorem 1 is

satisfied (although the stronger conditíon (2.13) of Corollary 1 is not). ~

In the case of a linear model, ie., when Assumption 2' holds and r-k, the

prior structures appearing in Corollaries 2 and 3 are closely related to the

semi-conjugate príors that are introduced by Osíewalski and Steel (1990). Semi-

conjugate priors of ~ and r2 (given p and v) are defined as those priors which

correspond to Normal-gamma distributions of ~ and ~2 (given n and v).S Let m-

ktp (~10) and d(B) - f~ t(~-~7)'A~(~-~~), where fn, ~n and An are,

respectively, a posítive scalar, a k-dimensíonal vector, and a kxk PDS matrix

(all possíbly depending on p, but not on v). Assume that

P(Fln,~) - P(~In) - fT(FIP,Pn,(f A~) 1),
n

then in the cases considered in Corollary 2 and 3 we have respectively

P(p,r2lri,~) - fT(~Iv.~n,(f~An)-1) fIB(r212,k~,d~B)),

P(~,r2~n,~) - fT(~IW,~n,(f~An)-1)
fB(T2Ik2p v-~-p d(B))

(2.14)

In both situations, the priors in (2.14) lead to a Normal-gamma distríbution of

~ and ~2 (given q), independent of v, gíven by

P(6,~21n,v) - P(~,~21n) - fN(91Rn,~ Z A7 1) fC(~212, fn~2) .

5 Osíewalski and Steel ( 1990) assume that v and V are fully known. In our
framework, where v ís unknown and V- V(X,q), their considerations can be
interpreted as conditional on v,q and X.
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Due to the fact that u, f ~ and A are not functionally related to v, the
n' n n

semi-conjugate priors above preclude learning from the data about v, provided

that q and v are a priori independent.

2.3 PRIOR-POSTERIOR ANALYSIS: IMPROPER PRIORS

We now turn to the specially interesting case of the usual improper prior

of r2, which is not covered by Theorem 1, since the arguments made there are not

necessaríly valíd for distributions that are not proper.

THEOREM 2: Consider (2.1) under A1-A5, and A7. Suppose

P(w,z) - P(B)p(rZ,z,v~B)

and

P(r2,z,vIB) - cr-Zp(zIB,~)P(~), (2.15)

where c ~ 0 is any constant, the pdf of z~B,v is proper and functionally

independent of r2, and that of v is proper and functionally independent of

(r2,B). If

1 n
f P(B)I~(X,n)I Z[(Y - h(X,R))'~(X,n) 1(Y - h(X,9))1 2de ~ m,

BxH

then p(v~y,X) - p(v).

(2.16)

Z 2 -2 vPROOF: From ( 2.15), and the ~ parametrízation, p(~ ,z,vlB) - c~ p(zlB,v)p( ).

Applying (2.7), the marginal posterior of v is proportional to

P(~IY,X) a P(~)J f f fN(YIh(X,~).~ 2V(X.n))m Z P(zIB,~)P(B)dzd~ZdB
BxH 0 0
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1 n
a P(v)I P(B)IV(X.0)I 2[(Y - h(X,~))~V(X,o) 1(Y - h(X,~))] 2dB,

and the result i s immedíate. ~

We now point out an implication of Theorem 2 for the case when the

observation vector y is distributed as MVt (given X, B,r2,v).

COROLLARY 4. In (2.1), suppose A1-A3, A4', AS' and A7 hold. Also suppose

that in (2.15) we have

P(r2,z,vIB) - cr-Zp(v) fG(zI2,2) ,

where p(v) is proper and assume that the integral ín (2.16) converges. Then,

P(~IY.X) - P(~) -

Of course, Theorem 2 can be applied to situations other than that described

ín Corollary 4 as long as the distr-ibution of zI~ does not functionally depend

on r2. If the latter condition holds, then the improper prior of the precísíon

parameter r2 together with the prior independence between B and v are sufficient

to prevent an updating of the prior of v.

3. USEFUL PRIOR FAMILIES

We now examine classes of prior distributíons that may allow us to update

the prior of v. Essentially, the idea is to propose families of priors that do

not satisfy the sufficient conditions of Theorems 1 and 2 and Corollaries 1-4.

We dcfine rhree such families. We límit our attention to the model with the

observatíon vector distributed as n-variate Student-t with v degrees of freedom,

the location vector h(X,~) and the precision matrix r2~V(X,~)I 1(cf. (2.4))

Therefore, for the remainder of the discussion, yIX,B,r2,z,v and zIB,rZ,v have

distributions with pdfs given by
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P(YIX,B.r2,z.~) - fp(Ylh(X;~).vr-2z-lV(X,n)) ,

P(zIB,r2,~) - P(zl~) - fC(z~2,2).

3.1 PROPER PRIOR FAMILIES

A simple and useful proper prior family that does not satisfy the condition

of Corollary 1 can be based on an informative prior on r2 as follows. Consider

the following general prior structure

Prior 1: P(B,r2,v) - P(B) fC(r212,d~2)) P(~) (3.2)

where p(r2~B) is the gamma pdf, m is a positive constant, and d(B) is a known

positive function of B, which may be the constant function. In (3.2), (B,r2)

and ~ are índependent. Simple calculations show that, for m2 - r2z~v,

P(~2IB,z,Y) - fC(4'2~2,ZZ d(B)) .

Thus ~2 and (z,v) are dependent, given B, and condition (2.13) of Corollary 1 is

not met, in spite of the índependence between B and (z,v) from (3.1) and (3.2).

The next example describes some ímplications of adopting Prior 1.

Examule 1. Consider (2.4) and suppose A2' and A3' hold. Assume the following

Normal-gamma prior structure for (B,r2) (independent of ~):

P(B.r2) - fp(~Ib,r-2C) fC(r212 2)

Sínce p(B,r2) can be also expressed as

2 f 2 atk ft(~-b)'C-1(~-b)
P(B,r )- fT(~Ia,b,áC)fC(r I2, 2 ),

we have a special case of Prior 1, with B - ~, m- atk, d(B) - ft(~-b)'C 1(~-b),
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and p(~) - fT(~~a,b,(f~a)C). Under these prior assumptions we obtain the
following marginalized likelihood:

m
P(YIX~~) - ,~ fT(Y~a,Xb,á(ZIntXCX~))fC(z12.2) dz,

0

which is, generally, not constant in ~. However, the calculation of posterior
moments of v will require bivariate numerical integrations (w.r.t. z and v).

0

Another prior family that allows for the updating of p(v) can be proposed.
Consider a three-parameter inverted beta prior and assume that

Príor 2: p(B,v) - p(B) p(v)

r2 B,v - f 2 v m vP( I ) IB(r I2,z,d~B)). (3.3)

In this case, after some calculatíons we find that the pdf of ~2 - r2z~~ is

given by

P(~21B,z,v) - fla(~2I2,2,d~B)),

which shows that ~2 and (z,v) are dependent, given B, and that B and (z,v) are

independent (which can be verified using (3.1) and (3.3)). However, since the

condition (2.13) of Corollary 1 is not met, updating v's prior may be possible.

Prior 2 generalízes the joint informative príor specifíed by Zellner (1976) for

the linear model with diagonal error covariance matrix. This fact is brought

out in the followíng example.
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Examole 2. Consider the linear spherical model used in Example 1.
following conditíonal príor of (~,r2) given v;

P(B.r?I~) - P(~Ir~.~) P(r2I~)

Assume the

(3.4)

2
- f.l.(~lat~,b~atvr r-2C)fIB(r212,2.f).

where the conditional príor of B-~ (given r2 and v) ís k-variate MVt with at~
degrees of freedom, mean vector b and precisíon matríx ((at~)~(vtfr2)~r2C-1.

The conditional prior of r2 given v i s a three-parameter ínverted beta
distribution such that fr2~a has an F distribution wíth ( a,~) degrees of
freedom. This i s exactly the informatíve prior proposed by 2ellner (1976).
Note that ( 3.4) can be equivalently written as

P(d.rZl~) - P(~I~) P(r21~.~) - P(~) P(r2I~,~)

- f.l.(Qla,b,áC) fIB(r`I2.a2k,L)g(~) ' (3.5)

where g(~) - ft(~-b)'C 1(~-b). The form of p(rZl~,v) appearing in (3.5) is a

special case of Prior 2 with m-atk ~ k and d(B) - g(~). If the prior of (3.5)

is used, the calculations are slightly heavíer than in the Normal-gamma case ín
Example I. The margínalized Likelihood is gíven by

m
P(YIX.~) - ,j fT(YIa,Xb,á(sIntXCX ))fF(slv,~) ds,

0

where fF(sl~,v) - fIB(slv~2,v~2,1) is an F density with ( ~,v) degrees of
freedom. Again, p(yIX,~) i s (generally) not constant in v, so p(vly,X) r p(~),
Deriving the posterior moments of ~ will require bivariate numerical integration
(w.r.t. s and ~). -
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3.2 IMPROPER PRIOR FAMILIES

In this section we focus on príor families that are ímproper and which

permit an update of prior beliefs. Note that the main condition of Theorem 2

(i.e. (2.15)) could be satisfied if príor beliefs about the precísion parameter

r2 are vague and the joint prior of ~ is

Prior 3. p(B,r2,v) a p(B,v) r-2. (3.6)

However, (3.6) will only imply (2.15) íf we assume that p(B,v) - p(B) p(v), in

addition to (3.1). Therefore, in order to update our prior beliefs about v, we

cannot allow such a factorízation. Thus, only those priors of (B,v) which make

B dependent on v are worth considering. The prior-pos[erior analysis for v with

Prior 3 i s examined ín the following example.

Example 3. Consider the linear spherical model from Example 1. Assume the

following prior structure on (~,v):

P(~.v) - fN(~Ib~,C~)P(v). (3.7)

Combining (3.1) with ( 3.6) and ( 3.7), the complete Bayesian model (cf. (2.7)),

in the ~2 parametrization is gíven by

P(Y~~,~2~z,~lX) a fN(YIX6, ~ 2 In)~ 2 fC(z12,2) P(v~~)-

Integrating out z and ~ from (3.8) yields the following posterior of v:

P(~IY.X) ~ P(~)~ J~ 2 fN(YIXb~.14 2In t XC~X I) d~2.
0

This posterior is not equal to the prior, p(~), as long as b or C are not
v v

(3.8)

constant ín v. ~
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Some remarks about these examples are important. Note that in Examples 1

and 2, where the priors on r2 are informative, we have also assumed an

inEormatíve rior on 2p ~, and prior dependence between ~ and r. First of all,

this prior dependence is not crucial. We could assume in (3.2) or (3.3) that

d(B) . h, where h ís a positive constant, and in this way make r2 independent of

B given v. On the other hand, prior dependence makes calculations easier.

Without this we could be faced with the necessity of more than bivariate

numerical integration in the informative case. The second point worth

mentioning is that, when the prior of r2 is ínformative, the prior of ~ can be

diffuse and still the prior of v can be updated, as illustrated in the following

example.

Examnle 4. Consider the iinear spherical model of Example 1. Assume the

following improper prior (which, loosely speaking, can be treated as a special

case of Prior 1):

P(B,r2,~) - P(~) P(rz) P(v) ,

P(~) ~ c , ~tRk .

P(r2) - fC(r212,2) ,

where c,m,h are positive constants. In this example, X is of full column rank

k, and the complete Bayesian model (2.7) is given by

P(Y.~,r2.z,vIX) - c fN(YIX~.Zr-2In) fC(r212,2) fC(212.2) P(v)

or, in terms of ~2 - (zr2)~v,

P(Y.~,~2,z,vIX) - c fN(YIX~.d 2 In) fC(~212,ZZ) fC(z12.2) P(~) .
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Lettin -1 ' zg~-(X X) X y, s-(y-X~)'(y-X~), and performing analytical integration
w.r.t. ~ and ~Z we obtain the following formula for the posterior pdf of v:

~
P(vIY,X) aP(v) ,j ll t zs2r(vh)) -(~n-k)~Z lz~vl ( n-k)j2 f~(z~2,z) dz. ~

0

It is important to note that in all four examples numerical íntegration

w.r.t. some auxiliary variables is necessary in order to obtain the marginal

posteríor density of the degrees-of-freedom parameter. Furthermore, we have

explicitly treated only the simplest case: the linear model wíth scalar

precision matrix. Our results, however, can be applied to more complícated

situations, such as nonlinear models and non-constant V(X,p), from the general

theoretical basis for ínference on v developed in Sectíons 2 and 3.

4. CONGLUSION

This paper has focused on a general class of nonlinear, elliptical error

regression models and discussed Bayesían inference on the degrees of freedom

parameter of the error dístribution. We have provided conditions under whích

the prior of v is not updated by the sample data. Three classes of priors that

can be updated are specified, and the prior-posterior analysis with these priors

is illustrated within the context of linear models. We feel that the results

obtained here would be quite useful in applicatíons involving heavy-tailed error

dístributions such as the MVt.
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