89 research outputs found

    First results obtained using the CENBG nanobeam line: performances and applications

    Get PDF
    A high resolution focused beam line has been recently installed on the AIFIRA (“Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine”) facility at CENBG. This nanobeam line, based on a doublet–triplet configuration of Oxford Microbeam Ltd. OM-50™ quadrupoles, offers the opportunity to focus protons, deuterons and alpha particles in the MeV energy range to a sub-micrometer beam spot. The beam optics design has been studied in detail and optimized using detailed ray-tracing simulations and the full mechanical design of the beam line was reported in the Debrecen ICNMTA conference in 2008. During the last two years, the lenses have been carefully aligned and the target chamber has been fully equipped with particle and X-ray detectors, microscopes and precise positioning stages. The beam line is now operational and has been used for its firstapplications to ion beam analysis. Interestingly, this set-up turned out to be a very versatile tool for a wide range of applications. Indeed, even if it was not intended during the design phase, the ion optics configuration offers the opportunity to work either with a high current microbeam (using the triplet only) or with a lower current beam presenting a sub-micrometer resolution (using the doublet–triplet configuration). The performances of the CENBGnanobeam line are presented for both configurations. Quantitative data concerning the beam lateral resolutions at different beam currents are provided. Finally, the firstresults obtained for different types of application are shown, including nuclear reaction analysis at the micrometer scale and the firstresults on biological sample

    Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    Get PDF
    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.The work presented in this paper was supported by grants from the BBSRC: BB/G016240/1 BBSRC Sustainable Energy Centre Cell Wall Sugars Programme (BSBEC) and the European Community’s Seventh Framework Programme SUNLIBB (FP7/2007-2013) under the grant agreement n° 251132 to PD. The UK 850 MHz solid-state NMR Facility was funded by EPSRC and BBSRC, as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF); we thank Dinu Iuga for experimental assistance, and Chris Somerville for helpful discussions and suggesting the name STELLO. The authors acknowledge LNBio and LNLS for providing X-ray beam time (proposal GAR 15208), and the Sainsbury Laboratory Cambridge University for imaging facilities. TV was supported by an EMBO long-term fellowship (ALTF 711-2012) and by postdoctoral funding from the Philomathia Foundation. HEM was supported by an EMBO Long Term Fellowship (ALTF-1246-2013) and an NSERC Postdoctoral Fellowship (PDF-454454-2014). SP and YZ were supported by the Max-Planck Gesellschaft, and SP was also supported by a R@MAP Professor position at UoM. We thank the Biological Optical Microscopy Platform (BOMP) at University of Melbourne, and Tom Simmons and Rita Marques for assistance on sugar analyses.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms11656

    Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context

    Get PDF
    Interacting, diverse microbe-sediment systems exist in natural environments today but have not yet been recognized in the oldest records of life on Earth (older than 3.3 Ga) because of lack of distinctive biomarker molecules and patchy preservation of microbial paleocommunities. In an in-situ outcrop- to microbial-scale study, we have differentiated probable phototrophic, chemolithotrophic, and chemo-organotrophic fossil microbial signatures in a nearshore volcanogenic sedimentary setting in 3.33 Ga rocks of the Josefsdal Chert, Barberton greenstone belt, South Africa, while demonstrating the importance of contemporaneous hydrothermal activity. Hydrothermal fluids, as a nutrient source, strongly controlled the development and distribution of the microbial communities and, as a silicifying agent, contributed to their rapid fossilization. We thus show that intricate microbe-sediment systems are deep-rooted in time and that at least some early life may indeed have been thermophilic.Instituto de Recursos Minerale

    Changing potency by spontaneous fusion

    Get PDF
    Recent reports have suggested that mammalian stem cells residing in one tissue may have the capacity to produce differentiated cell types for other tissues and organs (1–9). Here we define a mechanism by which progenitor cells of the central nervous system can give rise to non-neural derivatives. Cells taken from mouse brain were co-cultured with pluripotent embryonic stem cells. Following selection for a transgenic marker carried only by the brain cells, undifferentiated stem cells are recovered in which the brain cell genome has undergone epigenetic reprogramming. However, these cells also carry a transgenic marker and chromosomes derived from the embryonic stem cells. Therefore the altered phenotype does not arise by direct conversion of brain to embryonic stem cell but rather through spontaneous generation of hybrid cells. The tetraploid hybrids exhibit full pluripotent character, including multilineage contribution to chimaeras. We propose that transdetermination consequent to cell fusion (10) could underlie many observations otherwise attributed to an intrinsic plasticity of tissue stem cells (9)

    Aspects de l\u27hematopoiese en culture du foie de souris.

    No full text
    corecore