627 research outputs found

    Estimation, Analysis, Sources, and Verification of Consumptive Water Use Data in the Great Lakes-St. Lawrence River Basin

    Get PDF
    The Great Lakes-St. Lawrence River basin provides water for many uses and for wildlife habitat; thus many groups have developed strategies to manage the basin \u27s water resource. The International Joint Commission (IJC) is reviewing and comparing available consumptive-use data to assess the magnitude and effect of consumptive uses under present projected economic and hydraulic conditions on lake levels. As a part of this effort, the U.S. Geological Survey compared its own estimates of consumptive use in the United States with those generated by (1) the International Great Lakes Diversions and (2) the IJC. The U.S. Geological Survey also developed two methods of calculating consumptive-use projections for 1980 through 2000; one method yields an estimate of 6,490 cu ft/s for the year 2000; the other yields an estimate of 8,330 cu ft/s. These two projections could be considered the upper and lower limits for the year 2000. The reasons for the varying estimates are differences in (1) methods by which base year values were developed, and (2) the methods or models that were used to project consumptive-use values for the future. Acquisition of consumptive-use data from water users or governmental agencies or ministries would be desirable to minimize reliance on estimates. (USGS

    Preliminary evaluation of infrared and radar imagery, Washington and Oregon coasts

    Get PDF
    Airborne infrared and radar photography of Oregon and Washington coastal region

    Survey of Selected Organic Compounds in Aquifers of New York State Excluding Long Island

    Get PDF
    Samples from 56 wells at 49 sites in New York State, excluding Long Island, were analyzed by gas chromatography/mass spectrometry for the presence of organic compounds designated \u27 priority pollutants \u27 by the U.S. Environmental Protection Agency. Most samples were taken from public-supply wells tapping shallow, permeable aquifers, the most susceptible to contamination. Analytical sensitivity reported by the laboratory for most compounds was less than 1 microgram per liter, but contamination during collection, shipping, or laboratory processing required that concentrations be about 10 micrograms per liter before the presence of a compound could be confirmed. Only a small percentage of wells sampled in this study was found to be contaminated. Where contamination is present, it probably results from point sources such as landfills or dumps rather than from general sources such as atmospheric deposition or proximity to urban centers. Two sites, Brewster in Putnam County and Olean in Cattaraugus County, showed clear evidence of contamination. Two other sites, Corning in Steuben County and Fulton in Oswego County, showed evidence of possible contamination. (USGS

    Ellsworth, Frank Miller

    Get PDF
    https://digitalcommons.otterbein.edu/archives_spirit/1014/thumbnail.jp

    Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Full text link
    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 ±\pm 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 ±\pm 0.03 for Carbostyril-124, and 1.20 ±\pm 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.Comment: 7 pages, 9 figures, Submitted to Nuclear Instruments and Methods

    UNLV Brass Band and UNLV New Horizons Band

    Full text link
    Program listing performers and works performed

    Data Fusion of Objects Using Techniques Such as Laser Scanning, Structured Light and Photogrammetry for Cultural Heritage Applications

    Full text link
    In this paper we present a semi-automatic 2D-3D local registration pipeline capable of coloring 3D models obtained from 3D scanners by using uncalibrated images. The proposed pipeline exploits the Structure from Motion (SfM) technique in order to reconstruct a sparse representation of the 3D object and obtain the camera parameters from image feature matches. We then coarsely register the reconstructed 3D model to the scanned one through the Scale Iterative Closest Point (SICP) algorithm. SICP provides the global scale, rotation and translation parameters, using minimal manual user intervention. In the final processing stage, a local registration refinement algorithm optimizes the color projection of the aligned photos on the 3D object removing the blurring/ghosting artefacts introduced due to small inaccuracies during the registration. The proposed pipeline is capable of handling real world cases with a range of characteristics from objects with low level geometric features to complex ones

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning

    Alternative Sources of Large Seasonal Ground-water Supplies in the Headwaters of the Susquehanna River Basin, New York

    Get PDF
    The northern divide of the Susquehanna River basin crosses 29 broad valleys that contain thick glacial deposits but are drained only by small headwater streams. Much groundwater could be withdrawn from sand and gravel deposits in these valleys with little immediate effect on streamflow. A digital model of the headwater reach of one typical valley suggests that pumping 10.8 million gal/day for 2 months every summer would lower the water table as much as 33 ft, cause the upper 1,900 ft of the stream draining the valley to go dry, and reduce streamflow downvalley by 1.2 million gal/day by the time pumping ceased. Saturated thickness of surficial sand and gravel exceeds 40 ft in about half the headwater valley reaches; the valley floor areas range from 0.2 to 9 sq mi. Seepage losses from small streams that carry runoff from adjacent till-covered uplands are a major source of recharge to aquifers in these valleys under natural conditions and would increase if the water table were lowered by seasonal withdrawals. Some aquifers beneath extensive clay layers in these and other valleys of the Susquehanna River basin may be partially independent of streams but not easily evaluated. (USGS
    • …
    corecore