Cherenkov detectors employ various methods to maximize light collection at
the photomultiplier tubes (PMTs). These generally involve the use of highly
reflective materials lining the interior of the detector, reflective materials
around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the
use of water-soluble wavelength-shifters has been explored to increase the
measurable light yield of Cherenkov radiation in water. These wave-shifting
chemicals are capable of absorbing light in the ultravoilet and re-emitting the
light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we
have characterized the increase in light yield from three compounds in water:
4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in
PMT response at a concentration of 1 ppm as: 1.88 ± 0.02 for
4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 ± 0.03 for
Carbostyril-124, and 1.20 ± 0.02 for Amino-G Salt. The response of
4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of
the experimental gain at 1 ppm concentration. Finally, we report an increase in
neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water
Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.Comment: 7 pages, 9 figures, Submitted to Nuclear Instruments and Methods