12,425 research outputs found
Swinging and tumbling of elastic capsules in shear flow
The deformation of an elastic micro-capsule in an infinite shear flow is
studied numerically using a spectral method. The shape of the capsule and the
hydrodynamic flow field are expanded into smooth basis functions. Analytic
expressions for the derivative of the basis functions permit the evaluation of
elastic and hydrodynamic stresses and bending forces at specified grid points
in the membrane. Compared to methods employing a triangulation scheme, this
method has the advantage that the resulting capsule shapes are automatically
smooth, and few modes are needed to describe the deformation accurately.
Computations are performed for capsules both with spherical and ellipsoidal
unstressed reference shape. Results for small deformations of initially
spherical capsules coincide with analytic predictions. For initially
ellipsoidal capsules, recent approximative theories predict stable oscillations
of the tank-treading inclination angle, and a transition to tumbling at low
shear rate. Both phenomena have also been observed experimentally. Using our
numerical approach we could reproduce both the oscillations and the transition
to tumbling. The full phase diagram for varying shear rate and viscosity ratio
is explored. While the numerically obtained phase diagram qualitatively agrees
with the theory, intermittent behaviour could not be observed within our
simulation time. Our results suggest that initial tumbling motion is only
transient in this region of the phase diagram.Comment: 20 pages, 7 figure
Hydrologic Properties of Subarctic Organic Soils
Completion Report
for
U. S. Forest Service
Institute of Northern Forestry
Cooperative Agreement No. 16 USC 581; 581a-581iThe need for understanding the natural system and how it responds
to various stresses is important; this is especially so in an environment
where the climate not only sustains permafrost, but develops
massive seasonal frost as well. Consequently, the role of the shallow
surface organic layer is also quite important. Since a slight change in
the soil thermal regime may bring about a phase change in the water or
ice, therefore, the system response to surface alterations such as
burning can be quite severe. The need for a better understanding of the
behavior and properties of the organic layer is, therefore, accentuated.
The central theme of this study was the examination of the hydrologic
and hydraulic properties of subarctic organic soils. Summarized
in this paper are the results of three aspects of subarctic organic soil
examinations conducted during the duration of the project. First, a
field site was set up in Washington Creek with the major emphasis on
measuring numerous variables of that soil system during the summer. The
greatest variations in moisture content occur in the thick organic soils
that exist at this site. Our major emphasis was to study the soil
moisture levels in these soils. This topic is covered in the first
major section, including associated laboratory studies. Those laboratory
studies include investigations of several hydraulic and hydrologic
properties of taiga organic and mineral soils. Second, some field data
on organic moisture levels was collected at the site of prescribed burns
in Washington Creek to ascertain the sustainability of fires as a function
of moisture levels. This portion of the study is described under the
second major heading. The last element of this study was a continued
application of the two-dimensional flow model that was developed in an
earlier study funded by the U. S. Forest Service, Institute of Northern
Forestry, and reported by Kane, Luthin, and Taylor (1975a).
Many of the results and concepts gathered in the field work were
integrated into the modeling effort, which is aimed at producing better
estimates of the hydrologic effects of surface disturbances in the black
spruce taiga subarctic ecosystem. This knowledge should also contribute
to better fire management decisions of the same system.The work upon which this report is based was made possible by a
cooperative aid agreement funded by the U. S. Forest Service, Institute
of Northern Forestry, Fairbanks, Alaska. Contribution to this study was
also made by Ohio State University
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Non-monotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate
The thermal fluctuation spectrum of a fluid membrane coupled harmonically to
a solid support by an array of tethers is calculated. For strong tethers, this
spectrum exhibits non-monotonic, anisotropic behavior with a relative maximum
at a wavelength about twice the tether distance. The root mean square
displacement is evaluated to estimate typical membrane displacements. Possible
applications cover pillar-supported or polymer-tethered membranes.Comment: 4 pages, 5 figure
Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm from a metallic spintronic emitter
To explore the capabilities of metallic spintronic thin-film stacks as a
source of intense and broadband terahertz electromagnetic fields, we excite a
W/CoFeB/Pt trilayer on a large-area glass substrate (diameter of 7.5 cm) by a
femtosecond laser pulse (energy 5.5 mJ, duration 40 fs, wavelength 800 nm).
After focusing, the emitted terahertz pulse is measured to have a duration of
230 fs, a peak field of 300 kV cm and an energy of 5 nJ. In particular,
the waveform exhibits a gapless spectrum extending from 1 to 10 THz at 10% of
amplitude maximum, thereby facilitating nonlinear control over matter in this
difficult-to-reach frequency range and on the sub-picosecond time scale.Comment: 7 pages, 4 figure
Measurement of Stochastic Entropy Production
Using fluorescence spectroscopy we directly measure entropy production of a
single two-level system realized experimentally as an optically driven defect
center in diamond. We exploit a recent suggestion to define entropy on the
level of a single stochastic trajectory (Seifert, Phys. Rev. Lett. {\bf 95},
040602 (2005)). Entropy production can then be split into one of the system
itself and one of the surrounding medium. We demonstrate that the total entropy
production obeys various exact relations for finite time trajectories.Comment: Phys. Rev. Lett., in pres
Investigation of a hopping transporter concept for lunar exploration
Performance and dynamic characteristics determined for hopping transporter for lunar exploratio
Complex Line Bundles over Simplicial Complexes and their Applications
Discrete vector bundles are important in Physics and recently found
remarkable applications in Computer Graphics. This article approaches discrete
bundles from the viewpoint of Discrete Differential Geometry, including a
complete classification of discrete vector bundles over finite simplicial
complexes. In particular, we obtain a discrete analogue of a theorem of Andr\'e
Weil on the classification of hermitian line bundles. Moreover, we associate to
each discrete hermitian line bundle with curvature a unique piecewise-smooth
hermitian line bundle of piecewise constant curvature. This is then used to
define a discrete Dirichlet energy which generalizes the well-known cotangent
Laplace operator to discrete hermitian line bundles over Euclidean simplicial
manifolds of arbitrary dimension
First measurements of the flux integral with the NIST-4 watt balance
In early 2014, construction of a new watt balance, named NIST-4, has started
at the National Institute of Standards and Technology (NIST). In a watt
balance, the gravitational force of an unknown mass is compensated by an
electromagnetic force produced by a coil in a magnet system. The
electromagnetic force depends on the current in the coil and the magnetic flux
integral. Most watt balances feature an additional calibration mode, referred
to as velocity mode, which allows one to measure the magnetic flux integral to
high precision. In this article we describe first measurements of the flux
integral in the new watt balance. We introduce measurement and data analysis
techniques to assess the quality of the measurements and the adverse effects of
vibrations on the instrument.Comment: 7 pages, 8 figures, accepted for publication in IEEE Trans. Instrum.
Meas. This Journal can be found online at
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=1
Two-Component Fluid Membranes Near Repulsive Walls: Linearized Hydrodynamics of Equilibrium and Non-equilibrium States
We study the linearized hydrodynamics of a two-component fluid membrane near
a repulsive wall, via a model which incorporates curvature- concentration
coupling as well as hydrodynamic interactions. This model is a simplified
version of a recently proposed one [J.-B. Manneville et al. Phys. Rev. E, 64,
021908 (2001)] for non-equilibrium force-centres embedded in fluid membranes,
such as light-activated bacteriorhodopsin pumps incorporated in phospholipid
(EPC) bilayers. The pump/membrane system is modeled as an impermeable,
two-component bilayer fluid membrane in the presence of an ambient solvent, in
which one component, representing active pumps, is described in terms of force
dipoles displaced with respect to the bilayer midpoint. We first discuss the
case in which such pumps are rendered inactive, computing the mode structure in
the bulk as well as the modification of hydrodynamic properties by the presence
of a nearby wall. We then discuss the fluctuations and mode structure in steady
state of active two-component membranes near a repulsive wall. We find that
proximity to the wall smoothens membrane height fluctuations in the stable
regime, resulting in a logarithmic scaling of the roughness even for initially
tensionless membranes. This explicitly non-equilibrium result, a consequence of
the incorporation of curvature-concentration coupling in our treatment, also
indicates that earlier scaling arguments which obtained an increase in the
roughness of active membranes near repulsive walls may need to be reevaluated.Comment: 39 page Latex file, 3 encapsulated Postscript figure
- …
