2,738 research outputs found

    Multitasking versus multiplexing: Toward a normative account of limitations in the simultaneous execution of control-demanding behaviors

    Get PDF
    Why is it that behaviors that rely on control, so striking in their diversity and flexibility, are also subject to such striking limitations? Typically, people cannot engage in more than a few—and usually only a single—control-demanding task at a time. This limitation was a defining element in the earliest conceptualizations of controlled processing; it remains one of the most widely accepted axioms of cognitive psychology, and is even the basis for some laws (e.g., against the use of mobile devices while driving). Remarkably, however, the source of this limitation is still not understood. Here, we examine one potential source of this limitation, in terms of a trade-off between the flexibility and efficiency of representation (“multiplexing”) and the simultaneous engagement of different processing pathways (“multitasking”). We show that even a modest amount of multiplexing rapidly introduces cross-talk among processing pathways, thereby constraining the number that can be productively engaged at once. We propose that, given the large number of advantages of efficient coding, the human brain has favored this over the capacity for multitasking of control-demanding processes.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Hydrogen fluoride and inorganic fluorine compounds (fluorides) – Addendum: Evaluation of a pregnancy risk group for the BAT value

    Get PDF
    In 2005, the German Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area re-evaluated the maximum workplace concentration (MAK value) of hydrogen fluoride [7664-39-3] and fluorides [16984-48-8]. If the MAK values of 1 ml hydrogen fluoride/m3 (0.83 mg/m3) or 1 mg fluoride/m3, respectively, are not exceeded, prenatal toxic effects are not to be expected. Therefore, hydrogen fluoride and fluorides were classified in Pregnancy Risk Group C. In 2013, the biological tolerance value (BAT value) for hydrogen fluoride and inorganic fluorine compounds (fluorides) of 4 mg fluoride/l urine was established which protects against the long-term effects of fluoride such as skeletal fluorosis. The BAT value was not derived in correlation to the MAK value. For this reason, it is to be evaluated whether no prenatal toxic effects are to be expected when the BAT value is adhered to. By extrapolating the NOAEL (no observed adverse effect level) for developmental toxicity in rodent studies to fluoride concentrations in urine it could be concluded that Pregnancy Risk Group C is also valid for the BAT value

    Fisher information and multiparticle entanglement

    Full text link
    The Fisher information FF gives a limit to the ultimate precision achievable in a phase estimation protocol. It has been shown recently that the Fisher information for a linear two-mode interferometer cannot exceed the number of particles if the input state is separable. As a direct consequence, with such input states the shot-noise limit is the ultimate limit of precision. In this work, we go a step further by deducing bounds on FF for several multiparticle entanglement classes. These bounds imply that genuine multiparticle entanglement is needed for reaching the highest sensitivities in quantum interferometry. We further compute similar bounds on the average Fisher information Fˉ\bar F for collective spin operators, where the average is performed over all possible spin directions. We show that these criteria detect different sets of states and illustrate their strengths by considering several examples, also using experimental data. In particular, the criterion based on Fˉ\bar F is able to detect certain bound entangled states.Comment: Published version. Notice also the following article [Phys. Rev. A 85, 022322 (2012), DOI: 10.1103/PhysRevA.85.022322] by Geza T\'oth on the same subjec

    Rashba spin-orbit coupling in the square lattice Hubbard model: A truncated-unity functional renormalization group study

    Get PDF
    The Rashba-Hubbard model on the square lattice is the paradigmatic case for studying the effect of spin-orbit coupling, which breaks spin and inversion symmetry, in a correlated electron system. We employ a truncated-unity variant of the functional renormalization group which allows us to analyze magnetic and superconducting instabilities on equal footing. We derive phase diagrams depending on the strengths of Rasbha spin-orbit coupling, real second-neighbor hopping and electron filling. We find commensurate and incommensurate magnetic phases which compete with d-wave superconductivity. Due to the breaking of inversion symmetry, singlet and triplet components mix; we quantify the mixing of d-wave singlet pairing with f-wave triplet pairing

    Analysing multiparticle quantum states

    Full text link
    The analysis of multiparticle quantum states is a central problem in quantum information processing. This task poses several challenges for experimenters and theoreticians. We give an overview over current problems and possible solutions concerning systematic errors of quantum devices, the reconstruction of quantum states, and the analysis of correlations and complexity in multiparticle density matrices.Comment: 20 pages, 4 figures, prepared for proceedings of the "Quantum [Un]speakables II" conference (Vienna, 2014

    Rank-based model selection for multiple ions quantum tomography

    Get PDF
    The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the "sparsity" properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods -- the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) -- to models consising of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of 4 ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a 4 ions experiment aimed at creating a Smolin state of rank 4. The two methods indicate that the optimal model for describing the data lies between ranks 6 and 9, and the Pearson χ2\chi^{2} test is applied to validate this conclusion. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements.Comment: 24 pages, 6 figures, 3 table

    Comparative chromosome painting discloses homologous Segments in distantly related mammals

    Get PDF
    Comparative chromosome painting, termed ZOO-FISH, using DNA libraries from flow sorted human chromosomes 1,16,17 and X, and mouse chromosome 11 discloses the presence of syntenic groups in distantly related mammalian Orders ranging from primates (Homo sapiens), rodents (Mus musculus), even-toed ungulates (Muntiacus muntjak vaginalis and Muntiacus reevesi) and whales (Balaenoptera physalus). These mammalian Orders have evolved separately for 55-80 million years (Myr). We conclude that ZOO-FISH can be used to generate comparative chromosome maps of a large number of mammalian species

    H.E.S.S. observations of gamma-ray bursts in 2003-2007

    Full text link
    Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure
    • 

    corecore