779 research outputs found

    Characteristic and necessary minutiae in fingerprints

    Get PDF
    Fingerprints feature a ridge pattern with moderately varying ridge frequency (RF), following an orientation field (OF), which usually features some singularities. Additionally at some points, called minutiae, ridge lines end or fork and this point pattern is usually used for fingerprint identification and authentication. Whenever the OF features divergent ridge lines (e.g., near singularities), a nearly constant RF necessitates the generation of more ridge lines, originating at minutiae. We call these the necessary minutiae. It turns out that fingerprints feature additional minutiae which occur at rather arbitrary locations. We call these the random minutiae or, since they may convey fingerprint individuality beyond the OF, the characteristic minutiae. In consequence, the minutiae point pattern is assumed to be a realization of the superposition of two stochastic point processes: a Strauss point process (whose activity function is given by the divergence field) with an additional hard core, and a homogeneous Poisson point process, modelling the necessary and the characteristic minutiae, respectively. We perform Bayesian inference using an Markov-Chain-Monte-Carlo (MCMC)-based minutiae separating algorithm (MiSeal). In simulations, it provides good mixing and good estimation of underlying parameters. In application to fingerprints, we can separate the two minutiae patterns and verify by example of two different prints with similar OF that characteristic minutiae convey fingerprint individuality

    Energy dissipation in sheared wet granular assemblies

    Get PDF
    Energy dissipation in sheared dry and wet granulates is considered in the presence of an externally applied confining pressure. Discrete element simulations reveal that for sufficiently small confining pressures, the energy dissipation is dominated by the effects related to the presence of cohesive forces between the particles. The residual resistance against shear can be quantitatively explained by a combination of two effects arising in a wet granulate: (i) enhanced friction at particle contacts in the presence of attractive capillary forces and (ii) energy dissipation due to the rupture and reformation of liquid bridges. Coulomb friction at grain contacts gives rise to an energy dissipation which grows linearly with increasing confining pressure for both dry and wet granulates. Because of a lower Coulomb friction coefficient in the case of wet grains, as the confining pressure increases the energy dissipation for dry systems is faster than for wet ones

    Localization Recall Precision (LRP): A New Performance Metric for Object Detection

    Get PDF
    Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. At https://github.com/cancam/LRP we provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets. Our source code can easily be adapted to other datasets as well.Comment: to appear in ECCV 201

    Explaining variation in parents' and their children's stress during COVID-19 lockdowns

    Get PDF
    The coronavirus pandemic poses a substantial threat to people across the globe. In the first half of 2020, governments limited the spread of virus by imposing diverse regulations. These regulations had a particular impact on families as parents had to manage their occupational situation and childcare in parallel. Here, we examine a variation in parents' and children's stress during the lockdowns in the first half of 2020 and detect the correlates of families' stress. Between April and June 2020, we conducted an explorative online survey among n = 422 parents of 3- to 10-year-old children residing in 17 countries. Most participants came from Germany (n = 274), Iran (n = 70), UK (n = 23), and USA (n = 23). Parents estimated their own stress, the stress of their own children, and various information on potential correlates (e.g., accommodation, family constellation, education, community size, playtime for children, contact with peers, media consumption, and physical activity). Parents also stated personal values regarding openness to change, self-transcendence, self-enhancement, and conservation. The results indicate a substantial variation in the stress levels of families and their diverse reactions to regulations. Media consumption by children commonly increased in comparison to the time before the pandemic. Parents raising both pre-school- and school-aged children were at a particular risk of experiencing stress in response to regulations. Estimated stress and reactions varied with the age of children and the personal values of parents, suggesting that such variables need to be considered when implementing and evaluating regulations and supporting young families in the current and future pandemi

    Glioblastoma and glioblastoma stem cells are dependent on functional MTH1

    Get PDF
    Glioblastoma multiforme (GBM) is an aggressive form of brain cancer with poor prognosis. Cancer cells are characterized by a specific redox environment that adjusts metabolism to its specific needs and allows the tumor to grow and metastasize. As a consequence, cancer cells and especially GBM cells suffer from elevated oxidative pressure which requires antioxidant-defense and other sanitation enzymes to be upregulated. MTH1, which degrades oxidized nucleotides, is one of these defense enzymes and represents a promising cancer target. We found MTH1 expression levels elevated and correlated with GBM aggressiveness and discovered that siRNA knock-down or inhibition of MTH1 with small molecules efficiently reduced viability of patient-derived GBM cultures. The effect of MTH1 loss on GBM viability was likely mediated through incorporation of oxidized nucleotides and subsequent DNA damage. We revealed that MTH1 inhibition targets GBM independent of aggressiveness as well as potently kills putative GBM stem cells in vitro. We used an orthotopic zebrafish model to confirm our results in vivo and light-sheet microscopy to follow the effect of MTH1 inhibition in GBM in real time. In conclusion, MTH1 represents a promising target for GBM therapy and MTH1 inhibitors may also be effective in patients that suffer from recurring disease

    Localization recall precision (LRP): A new performance metric for object detection

    Get PDF
    Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose “Localization Recall Precision (LRP) Error”, a new metric specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the “Optimal LRP” (oLRP), the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, oLRP determines the “best” confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that oLRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. Our experiments demonstrate that LRP is more competent than AP in capturing the performance of detectors. Our source code for PASCAL VOC AND MSCOCO datasets are provided at https://github.com/cancam/LRP
    • …
    corecore