146 research outputs found

    Assorted effects of TGFβ and chondroitinsulfate on p38 and ERK1/2 activation levels in human articular chondrocytes stimulated with LPS

    Get PDF
    SummaryObjectivesInadequate cellular response of chondrocytes to stress frequently terminates in osteoarthritis (OA). Adequate response is fundamentally modulated by concerted cytokine signaling events, directing degradation and synthesis of cartilage on articular surfaces where and whenever necessary. Transforming growth factor (TGF)β is a prominent mediator in cartilage anabolism, although particular catabolic activities are occasionally reported. Clearly, before the TGFβ signal gets through to the gene regulatory machinery, cross talk with modulators occurs.MethodWe tested the hypothesis whether chondroitinsulfate (CS) modulates cell signaling. TGFβ and/or soluble CS was added to human articular chondrocytes (HACs) and activation of p38 and extracellular signal related kinase (ERK)1/2 was determined by immunoblot analysis. Expression levels of mRNA of matrix metalloproteinase (MMP)-2, -3 and -13 were determined by real-time polymerase chain reaction (PCR).ResultsNo significant effects were observed unless cells were stimulated with lipopolysaccharide (LPS), invigorating catabolic metabolism in chondrocytes. LPS effects, however, were profoundly modulated by TGFβ, CS and both applied in combination. Most prominent, the silencing of p38 stress signal by CS was superimposable to that of TGFβ. Phospho-ERK1/2 levels were raised by TGFβ three-fold over LPS induced levels. In contrast, CS treatment, alone or combined with TGFβ, reduced phosphorylation significantly below LPS induced levels. Finally, suppression of LPS induced MMP-13 mRNA levels resulted with CS.ConclusionSoluble CS modulates signaling events in chondrocytes concurrent with MMP-13 down regulation. The effects observed suggest a feedback signaling mechanism cross talking with TGFβ-signal pathways and may serve an explanation, on the cellular level, for the beneficial effects found in clinical studies with pharmacologic application of CS

    i-DATAQUEST : a Proposal for a Manufacturing Data Query System Based on a Graph

    Get PDF
    During the manufacturing product life cycle, an increasing volume of data is generated and stored in distributed resources. These data are heterogeneous, explicitly and implicitly linked and they could be structured and unstructured. The rapid, exhaustive and relevant acquisition of information from this data is a major manufacturing industry issue. The key challenges, in this context, are to transform heterogeneous data into a common searchable data model, to allow semantic search, to detect implicit links between data and to rank results by relevance. To address this issue, the authors propose a query system based on a graph database. This graph is defined based on all the transformed manufacturing data. Besides, the graph is enriched by explicitly and implicitly data links. Finally, the enriched graph is queried thanks to an extended queries system defined by a knowledge graph. The authors depict a proof of concept to validate the proposal. After a partial implementation of this proof of concept, the authors obtain an acceptable result and a needed effort to improve the system response time. Finally, the authors open the topic on the subjects of right management, user profile/customization and data update.Chaire ENSAM-Capgemini sur le PLM du futu

    To Sleep, to Strive, or Both: How Best to Optimize Memory

    Get PDF
    While numerous studies have shown that a night of sleep profits memory relative to wake, we still have little understanding about what factors mediate this effect of sleep. A clear understanding of the dynamics of this effect of sleep beyond the initial night of sleep is also lacking. Here, we examined the effect of extrinsic rewards on sleep-dependent declarative memory processing across 12 and 24 hr training-retest intervals. Subjects were either paid based on their performance at retest ($1 for each correct answer), or received a flat fee for participation. After a 12 hr interval we observed pronounced benefits of both sleep and reward on memory. Over an extended 24 hr interval we found 1) that an initial night of sleep partially protects memories from subsequent deterioration during wake, and 2) that sleep blocks further deterioration, and may even have a restorative effect on memory, when it follows a full day of wake. Interestingly, the benefit imparted to rewarded (relative to unrewarded) stimuli was equal for sleep and wake subjects, suggesting that the sleeping brain may not differentially process rewarded information, relative to wake. However, looking at the overall impact of sleep relative to reward in this protocol, it was apparent that sleep both imparted a stronger mnemonic boost than reward, and provided a benefit to memory regardless of whether it occurred in the first or the second 12 hrs following task training

    Memory for Semantically Related and Unrelated Declarative Information: The Benefit of Sleep, the Cost of Wake

    Get PDF
    Numerous studies have examined sleep's influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs) and information requiring the formation of novel associations (unrelated word pairs). Participants encoded a set of related or unrelated word pairs at either 9am or 9pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1) the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2) sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3) sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness

    Covert Reorganization of Implicit Task Representations by Slow Wave Sleep

    Get PDF
    There is evidence that slow wave sleep (SWS) promotes the consolidation of memories that are subserved by mediotemporal- and hippocampo-cortical neural networks. In contrast to implicit memories, explicit memories are accompanied by conscious (attentive and controlled) processing. Awareness at pre-sleep encoding has been recognized as critical for the off-line memory consolidation. The present study elucidated the role of task-dependent cortical activation guided by attentional control at pre-sleep encoding for the consolidation of hippocampus-dependent memories during sleep.A task with a hidden regularity was used (Number Reduction Task, NRT), in which the responses that can be implicitly predicted by the hidden regularity activate hippocampo-cortical networks more strongly than responses that cannot be predicted. Task performance was evaluated before and after early-night sleep, rich in SWS, and late-night sleep, rich in rapid eye movement (REM) sleep. In implicit conditions, slow cortical potentials (SPs) were analyzed to reflect the amount of controlled processing and the localization of activated neural task representations.During implicit learning before sleep, the amount of controlled processing did not differ between unpredictable and predictable responses, nor between early- and late-night sleep groups. A topographic re-distribution of SPs indicating a spatial reorganization occurred only after early, not after late sleep, and only for predictable responses. These SP changes correlated with the amount of SWS and were covert because off-line RT decrease did not differentiate response types or sleep groups.It is concluded that SWS promotes the neural reorganization of task representations that rely on the hippocampal system despite absence of conscious access to these representations.Original neurophysiologic evidence is provided for the role of SWS in the consolidation of memories encoded with hippocampo-cortical interaction before sleep. It is demonstrated that this SWS-mediated mechanism does not depend critically on explicitness at learning nor on the amount of controlled executive processing during pre-sleep encoding

    Delayed Onset of a Daytime Nap Facilitates Retention of Declarative Memory

    Get PDF
    BACKGROUND: Learning followed by a period of sleep, even as little as a nap, promotes memory consolidation. It is now generally recognized that sleep facilitates the stabilization of information acquired prior to sleep. However, the temporal nature of the effect of sleep on retention of declarative memory is yet to be understood. We examined the impact of a delayed nap onset on the recognition of neutral pictorial stimuli with an added spatial component. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an initial study session involving 150 neutral pictures of people, places, and objects. Immediately following the picture presentation, participants were asked to make recognition judgments on a subset of "old", previously seen, pictures versus intermixed "new" pictures. Participants were then divided into one of four groups who either took a 90-minute nap immediately, 2 hours, or 4 hours after learning, or remained awake for the duration of the experiment. 6 hours after initial learning, participants were again tested on the remaining "old" pictures, with "new" pictures intermixed. CONCLUSIONS/SIGNIFICANCE: Interestingly, we found a stabilizing benefit of sleep on the memory trace reflected as a significant negative correlation between the average time elapsed before napping and decline in performance from test to retest (p = .001). We found a significant interaction between the groups and their performance from test to retest (p = .010), with the 4-hour delay group performing significantly better than both those who slept immediately and those who remained awake (p = .044, p = .010, respectively). Analysis of sleep data revealed a significant positive correlation between amount of slow wave sleep (SWS) achieved and length of the delay before sleep onset (p = .048). The findings add to the understanding of memory processing in humans, suggesting that factors such as waking processing and homeostatic increases in need for sleep over time modulate the importance of sleep to consolidation of neutral declarative memories

    Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    Get PDF
    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies

    Brain function assessment in different conscious states

    Get PDF
    Background: The study of brain functioning is a major challenge in neuroscience fields as human brain has a dynamic and ever changing information processing. Case is worsened with conditions where brain undergoes major changes in so-called different conscious states. Even though the exact definition of consciousness is a hard one, there are certain conditions where the descriptions have reached a consensus. The sleep and the anesthesia are different conditions which are separable from each other and also from wakefulness. The aim of our group has been to tackle the issue of brain functioning with setting up similar research conditions for these three conscious states.Methods: In order to achieve this goal we have designed an auditory stimulation battery with changing conditions to be recorded during a 40 channel EEG polygraph (Nuamps) session. The stimuli (modified mismatch, auditory evoked etc.) have been administered both in the operation room and the sleep lab via Embedded Interactive Stimulus Unit which was developed in our lab. The overall study has provided some results for three domains of consciousness. In order to be able to monitor the changes we have incorporated Bispectral Index Monitoring to both sleep and anesthesia conditions.Results: The first stage results have provided a basic understanding in these altered states such that auditory stimuli have been successfully processed in both light and deep sleep stages. The anesthesia provides a sudden change in brain responsiveness; therefore a dosage dependent anesthetic administration has proved to be useful. The auditory processing was exemplified targeting N1 wave, with a thorough analysis from spectrogram to sLORETA. The frequency components were observed to be shifting throughout the stages. The propofol administration and the deeper sleep stages both resulted in the decreasing of N1 component. The sLORETA revealed similar activity at BA7 in sleep (BIS 70) and target propofol concentration of 1.2 μg/mL.Conclusions: The current study utilized similar stimulation and recording system and incorporated BIS dependent values to validate a common approach to sleep and anesthesia. Accordingly the brain has a complex behavior pattern, dynamically changing its responsiveness in accordance with stimulations and states. © 2010 Ozgoren et al; licensee BioMed Central Ltd

    Statistical Analysis of Sleep Spindle Occurrences

    Get PDF
    Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely

    Effect of multidisciplinary rehabilitation on sleep outcomes in individuals with preclinical Huntington disease: An exploratory study

    Get PDF
    Dear Editor Sleep disturbances are an early feature of Huntington disease (HD), which worsen as the disease progresses. Studies have documented increased sleep fragmentation, decreased rapid eye-movement (REM) sleep, reduced sleep efficiency, insomnia and an increase in periodic leg movements (PLMs) in individuals with HD [1], [2]. Disturbances in sleep are thought to exacerbate cognitive impairments and may hasten subcortical neurodegeneration [3], [4]. Hence, management of sleep disturbances in individuals with HD is imperative
    • …
    corecore