244 research outputs found

    Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies

    Get PDF
    Combination; Drug therapy; ImmunotherapyCombinació; Teràpia farmacològica; ImmunoteràpiaCombinación; Terapia farmacológica; InmunoterapiaBackground Lymphocyte-activation gene 3 (LAG-3) is an inhibitory immunoreceptor that negatively regulates T-cell activation. This paper presents preclinical characterization of the LAG-3 inhibitor, ieramilimab (LAG525), and phase I data for the treatment of patients with advanced/metastatic solid tumors with ieramilimab ±the anti-programmed cell death-1 antibody, spartalizumab. Methods Eligible patients had advanced/metastatic solid tumors and progressed after, or were unsuitable for, standard-of-care therapy, including checkpoint inhibitors in some cases. Patients received ieramilimab ±spartalizumab across various dose-escalation schedules. The primary objective was to assess the maximum tolerated dose (MTD) or recommended phase II dose (RP2D). Results In total, 255 patients were allocated to single-agent ieramilimab (n=134) and combination (n=121) treatment arms. The majority (98%) had received prior antineoplastic therapy (median, 3). Four patients experienced dose-limiting toxicities in each treatment arm across various dosing cohorts. No MTD was reached. The RP2D on a 3-week schedule was declared as 400 mg ieramilimab plus 300 mg spartalizumab and, on a 4-week schedule (once every 4 weeks; Q4W), as 800 mg ieramilimab plus 400 mg spartalizumab; tumor target (LAG-3) suppression with 600 mg ieramilimab Q4W was predicted to be similar to the Q4W, RP2D schedule. Treatment-related adverse events (TRAEs) occurred in 75 (56%) and 84 (69%) patients in the single-agent and combination arms, respectively. Most common TRAEs were fatigue, gastrointestinal, and skin disorders, and were of mild severity; seven patients experienced at least one treatment-related serious adverse event in the single-agent (5%) and combination group (5.8%). Antitumor activity was observed in the combination arm, with 3 (2%) complete responses and 10 (8%) partial responses in a mixed population of tumor types. In the combination arm, eight patients (6.6%) experienced stable disease for 6 months or longer versus six patients (4.5%) in the single-agent arm. Responding patients trended towards having higher levels of immune gene expression, including CD8 and LAG3, in tumor tissue at baseline. Conclusions Ieramilimab was well tolerated as monotherapy and in combination with spartalizumab. The toxicity profile of ieramilimab in combination with spartalizumab was comparable to that of spartalizumab alone. Modest antitumor activity was seen with combination treatment.This study was sponsored by Novartis Pharmaceuticals Corporation and preliminary results were previously presented at ASCO 2018

    B-cell activating factor (BAFF) plasma level at the time of chronic GvHD diagnosis is a potential predictor of non-relapse mortality

    Get PDF
    Biological markers for risk stratification of chronic GvHD (cGvHD) could improve the care of patients undergoing allogeneic hematopoietic stem cell transplantation. Increased plasma levels of B-cell activating factor (BAFF), chemokine (C-X-C motif) ligand 9 (CXCL9) and elafin have been associated with the diagnosis, but not with outcome in patients with cGvHD. We evaluated the association between levels of these soluble proteins, measured by ELISA at the time of cGvHD diagnosis and before the initiation of therapy, with non-relapse-mortality (NRM). Based on the log-transformed values, factor levels were divided into tertiles defined respectively as low, intermediate, and high levels. On univariable analysis, BAFF levels were significantly associated with NRM, whereas CXCL9 and elafin levels were not. Both low (⩽2.3 ng/mL, hazard ratio (HR)=5.8, P=0.03) and high (>5.7 ng/mL, HR=5.4, P=0.03) BAFF levels were associated with a significantly higher NRM compared with intermediate BAFF level. The significant effect of high or low BAFF levels persisted in multivariable analysis. A subset of cGvHD patients had persistently low BAFF levels. In conclusion, our data show that BAFF levels at the time of cGvHD diagnosis are associated with NRM, and also are potentially useful for risk stratification. These results warrant confirmation in larger studies

    Impact of human CA8 on thermal antinociception in relation to morphine equivalence in mice

    Get PDF
    Recently, we showed that murine dorsal root ganglion (DRG) Car8 expression is a cis-regulated eQTL that determines analgesic responses. In this report, we show that transduction through sciatic nerve injection of DRG with human wild-type carbonic anhydrase-8 using adeno-associated virus viral particles (AAV8-V5-CA8WT) produces analgesia in naive male C57BL/6J mice and antihyperalgesia after carrageenan treatment. A peak mean increase of about 4 s in thermal hindpaw withdrawal latency equaled increases in thermal withdrawal latency produced by 10 mg/kg intraperitoneal morphine in these mice. Allometric conversion of this intraperitoneal morphine dose in mice equals an oral morphine dose of about 146 mg in a 60-kg adult. Our work quantifies for the first time analgesia and antihyperalgesia in an inflammatory pain model after DRG transduction by CA8 gene therapy

    The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel

    Get PDF
    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method

    Recombinant renewable polyclonal antibodies

    Get PDF
    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products

    An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD

    Get PDF
    B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this “NOTCH2-BCR axis” in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8, each critical to B-cell differentiation and fate. All-trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4-to-IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5, but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity

    Bone Marrow B cell Precursor Number after Allogeneic Stem Cell Transplantation and GVHD Development

    Get PDF
    Patients without chronic graft-versus-host disease (cGVHD) have robust B cell reconstitution and are able to maintain B cell homeostasis after allogeneic hematopoietic stem cell transplantation (HSCT). To determine whether B lymphopoiesis differs before cGVHD develops, we examined bone marrow (BM) biopsies for terminal deoxynucleotidyl transferase (TdT) and PAX5 immunostaining early post-HSCTat day 30 when all patients have been shown to have high B cell activating factor (BAFF) levels. We found significantly greater numbers of BM B cell precursors in patients who did not develop cGVHD compared with those who developed cGVHD (median = 44 vs 2 cells/high powered field [hpf]; respectively; P < .001). Importantly, a significant increase in precursor B cells was maintained when patients receiving high-dose steroid therapy were excluded (median = 49 vs 20 cells/hpf; P =.017). Thus, we demonstrate the association of BM B cell production capacity in human GVHD development. Increased BM precursor B cell number may serve to predict good clinical outcome after HSCT
    corecore