1,862 research outputs found

    Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire

    Get PDF
    Here the aim of this research is annealing the surface of NiTi wire for shape memory alloy, super-elastic wire by solid state laser beam. The laser surface treatment was carried out on the NiTi wire locally with fast, selective, surface heat treatment that enables precisely tune the localized material properties without any precipitation. Both as drawn (hard) and straight annealing NiTi wire were considered for laser annealing with input power 3 W, with precisely focusing the laser beam height 14.3 % of the Z-axis with a spot size of 1 mm. However, straight annealing wire is more interest due to its low temperature shape setting behavior and used by companies for stent materials. The variable parameter such as speed of the laser scanning and tensile stress on the NiTi wire were optimized to observe the effect of laser response on the sample. Superelastic, straight annealed NiTi wires (d: 0.10 mm) were held prestrained at the end of the superelastic plateau (epsilon: 5 similar to 6.5 %) above the superelastic region by a tensile machine (Mitter: miniature testing rig) at room temperature (RT). Simultaneously, the hardness of the wires along the cross-section was performed by nano-indentation (NI) method. The hardness of the NiTi wire corresponds to phase changes were correlated with NI test. The laser induced NiTi wire shows better fatigue performance with improved 6500 cycles

    Cerenkov radiation by neutrinos in a supernova core

    Get PDF
    Neutrinos with a magnetic dipole moment propagating in a medium with a velocity larger than the phase velocity of light emit photons by the Cerenkov process. The Cerenkov radiation is a helicity flip process via which a left-handed neutrino in a supernova core may change into a sterile right-handed one and freestream out of the core. Assuming that the luminosity of the sterile right-handed neutrinos is less than 10^{53} ergs/sec gives an upper bound on the neutrino magnetic dipole moment \mu_\nu < 0.5 \times 10^{-13} \mu_B. This is two orders of magnitude more stringent than the previously established bounds on \mu_\nu from considerations of supernova cooling rate by right-handed neutrinos

    A geometric method for model reduction of biochemical networks with polynomial rate functions

    No full text

    The young cluster NGC 2282 : a multi-wavelength perspective

    Full text link
    We present the analysis of the stellar content of NGC~2282, a young cluster in the Monoceros constellation, using deep optical BVIBVI and IPHAS photometry along with infrared (IR) data from UKIDSS and SpitzerSpitzer-IRAC. Based on the stellar surface density analysis using nearest neighborhood method, the radius of the cluster is estimated as \sim 3.15\arcmin. From optical spectroscopic analysis of 8 bright sources, we have classified three early B-type members in the cluster, which includes, HD 289120, a previously known B2V type star, a Herbig Ae/Be star (B0.5 Ve) and a B5 V star. From spectrophotometric analyses, the distance to the cluster has been estimated as \sim 1.65 kpc. The KK-band extinction map is estimated using nearest neighborhood technique, and the mean extinction within the cluster area is found to be AV_V \sim 3.9 mag. Using IR colour-colour criteria and Hα_\alpha-emission properties, we have identified a total of 152 candidate young stellar objects (YSOs) in the region, of which, 75 are classified as Class II, 9 are Class I YSOs. Our YSO catalog also includes 50 Hα_\alpha-emission line sources, identified using slitless spectroscopy and IPHAS photometry data. Based on the optical and near-IR colour-magnitude diagram analyses, the cluster age has been estimated to be in the range of 2 - 5 Myr, which is in agreement with the estimated age from disc fraction (\sim 58\%). Masses of these YSOs are found to be \sim 0.1-2.0 M_\odot. Spatial distribution of the candidate YSOs shows spherical morphology, more or less similar to the surface density map.Comment: 16 pages, 19 Figure

    Star formation in W3 - AFGL333: Young stellar content, properties and roles of external feedback

    Full text link
    One of the key questions in the field of star formation is the role of stellar feedback on subsequent star formation process. The W3 giant molecular cloud complex at the western border of the W4 super bubble is thought to be influenced by the stellar winds of the massive stars in W4. AFGL333 is a ~10^4 Msun cloud within W3. This paper presents a study of the star formation activity within AFGL333 using deep JHKs photometry obtained from the NOAO Extremely Wide-Field Infrared Imager combined with Spitzer-IRAC-MIPS photometry. Based on the infrared excess, we identify 812 candidate young stellar objects in the complex, of which 99 are classified as Class I and 713 are classified as Class II sources. The stellar density analysis of young stellar objects reveals three major stellar aggregates within AFGL333, named here AFGL333-main, AFGL333-NW1 and AFGL333-NW2. The disk fraction within AFGL333 is estimated to be ~50-60%. We use the extinction map made from the H-Ks colors of the background stars to understand the cloud structure and to estimate the cloud mass. The CO-derived extinction map corroborates the cloud structure and mass estimates from NIR color method. From the stellar mass and cloud mass associated with AFGL333, we infer that the region is currently forming stars with an efficiency of ~4.5% and at a rate of ~2 - 3 Msun Myr-1pc-2. In general, the star formation activity within AFGL333 is comparable to that of nearby low mass star-forming regions. We do not find any strong evidence to suggest that the stellar feedback from the massive stars of nearby W4 super bubble has affected the global star formation properties of the AFGL333 region.Comment: 17 pages, 9 figures, Accepted for publication in Ap

    The molecular complex associated with the Galactic HII region Sh2-90: a possible site of triggered star formation

    Full text link
    We investigate the star formation activity in the molecular complex associated with the Galactic HII region Sh2-90, using radio-continuum maps obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500 microns, and deep near-infrared observation at JHK bands, along with Spitzer observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc x 1.6 pc). Radio observations suggest it is an evolved HII region with an electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7 pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 -- 95 Msun), four mid-IR blobs around B stars, and a compact HII region are found at the edge of the bubble.The velocity information derived from CO (J=3-2) data cubes suggests that most of them are associated with the Sh2-90 region. 129 YSOs are identified (Class I, Class II, and near-IR excess sources). The majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found; they will possibly evolve to stars of mass >= 15 Msun. We suggest multi-generation star formation is present in the complex. From the evidences of interaction, the time scales involved and the evolutionary status of stellar/protostellar sources, we argue that the star formation at the immediate border/edges of Sh2-90 might have been triggered by the expanding HII region. However, several young sources in this complex are probably formed by some other processes.Comment: 22 pages, 22 figures, accepted for publication in Astronomy and Astrophysic
    corecore