994 research outputs found
Principles of Chromatography Method Development
This chapter aims to explain the key parameters of analytical method development using the chromatography techniques which are used for the identification, separation, purification, and quantitative estimation of complex mixtures of organic compounds. Mainly, the versatile techniques of ultra−/high-performance liquid chromatography (UPLC/HPLC) are in use for the analysis of assay and organic impurities/related substances/degradation products of a drug substance or drug product or intermediate or raw material of pharmaceuticals. A suitable analytical method is developed only after evaluating the major and critical separation parameters of chromatography (examples for UPLC/HPLC are selection of diluent, wavelength, detector, stationary phase, column temperature, flow rate, solvent system, elution mode, and injection volume, etc.). The analytical method development is a process of proving the developed analytical method is suitable for its intended use for the quantitative estimation of the targeted analyte present in pharmaceutical drugs. And it mostly plays a vital role in the development and manufacture of pharmaceuticals drugs
First Observation of a Spontaneously Matured Female European Eel (Anguilla anguilla)
This study reports on the first observation of a spontaneously matured female European eel. The 43-year-old eel, together with eleven other females, resided at an aquarium house since their capture in 2002 and stocking as glass eels in 1978. In June 2019, the girth of the belly of the female increased as a sign of oocyte maturation. The specimen had an estimated gonadosomatic index (GSI) of 47, only half of the oocytes were hydrated and matured, indicating that European eels are polycyclic batch spawners. The live eels of the cohort were still in the previtellogenic phase but their eye sizes were close to that of the matured eel. We hypothesize that substances released by other maturing and spawning fishes may have triggered puberty of the eel. This first observation, and the possibility of more eels maturing in the near future, provides a natural reference for the sexual maturation of the European eel.</p
Transcriptional regulation of the urokinase receptor (u-PAR) - A central molecule of invasion and metastasis
The phenomenon of tumor-associated proteolysis has been acknowledged as a decisive step in the progression of cancer. This short review focuses on the urokinase receptor (u-PAR), a central molecule involved in tumor-associated invasion and metastasis, and summarizes the transcriptional regulation of u-PAR. The urokinase receptor (u-PAR) is a heavily glycosylated cell surface protein and binds the serine protease urokinase specifically and with high affinity. It consists of three similar cysteine-rich repeats and is anchored to the cell membrane via a GPI-anchor. The u-PAR gene comprises 7 exons and is located on chromosome 19q13. Transcriptional activation of the u-PAR promoter region can be induced by binding of transcription factors (Sp1, AP-1, AP-2, NF-kappaB). One current study gives an example for transcriptional downregulation of u-PAR through a PEA3/ets transcriptional silencing element. Knowledge of the molecular regulation of this molecule in tumor cells could be very important for diagnosis and therapy in the near future
Recommended from our members
Impact of unhealthy lifestyle on cardiorespiratory fitness and heart rate recovery of medical science students
Background: Medical science students represent valuable labour resources for better future medicine and medical technology. However, little attention was given to the health and well-being of these early career medical science professionals. The aim of this study is to investigate the impact of lifestyle components on cardiorespiratory fitness and heart rate recovery measured after moderate exercise in this population.
Methods: Volunteers without documented medical condition were recruited randomly and continuously from the first-year medical science students during 2011-2014 at the University of Surrey, UK. Demographics and lifestyle components (the levels of smoking, alcohol intake, exercise, weekend outdoor activity and screen-time, daily sleep period, and self-assessment of fitness) were gathered through pre-exercise questionnaire. Cardiorespiratory fitness (VO2max) and heart rate recovery were determined using Åstrand–Rhyming submaximal cycle ergometry test. Data were analysed using SPSS version 25.
Results: Among 614 volunteers, 124 had completed both lifestyle questionnaire and the fitness test and were included for this study. Within 124 participants (20.6±4 years), 46.8% were male and 53.2% were female, 11.3% were overweight and 8.9% were underweight, 8.9% were current smokers and 33.1% consumed alcohol beyond the UK recommendation. There were 34.7% of participants admitted to have <3 h/week of moderate physical activity assessed according to UK Government National Physical Activity Guidelines and physically not fit (feeling tiredness). Fitness test showed that VO2max distribution was inversely associated with heart rate recovery at 3 min and both values were significantly correlated with the levels of exercise, self-assessed fitness and BMI. Participants who had <3h/week exercise, or felt not fit or were overweight had significantly lower VO2max and heart rate recovery than their peers.
Conclusion: One in three new medical science students were physically inactive along with compromised cardiorespiratory fitness and heart rate recovery, which put them at risk of cardiometabolic diseases. Promoting healthy lifestyle at the beginning of career is crucial in keeping medical science professionals healthy
Recommended from our members
Incident Handling for Healthcare Organizations and Supply-Chains
Healthcare ecosystems form a critical type of infrastructures that provide valuable services in today societies. However, the underlying sensitive information is also of interest of malicious entities around the globe, with the attack volume being continuously increasing. Safeguarding this complex computerized setting constitutes a major challenge for the involved organizations. This paper presents an incident handling system for healthcare organizations and their supply-chain. The proposed approach utilizes swarm intelligence in order to assess the current security posture in a continuous basis and respond to attacks in real-time. The overall solution is based on the related NIST 800.61 standard and implements the operations of i) preparation, ii) detection and analysis, iii) containment, eradication, and recovery, and iv) post-incident activity. The system is developed under the EU funded project AI4HEALTHSEC and is applied in the relevant healthcare pilots
- …