652 research outputs found

    Designer Nets from Local Strategies

    Full text link
    We propose a local strategy for constructing scale-free networks of arbitrary degree distributions, based on the redirection method of Krapivsky and Redner [Phys. Rev. E 63, 066123 (2001)]. Our method includes a set of external parameters that can be tuned at will to match detailed behavior at small degree k, in addition to the scale-free power-law tail signature at large k. The choice of parameters determines other network characteristics, such as the degree of clustering. The method is local in that addition of a new node requires knowledge of only the immediate environs of the (randomly selected) node to which it is attached. (Global strategies require information on finite fractions of the growing net.

    Fractal and Transfractal Recursive Scale-Free Nets

    Full text link
    We explore the concepts of self-similarity, dimensionality, and (multi)scaling in a new family of recursive scale-free nets that yield themselves to exact analysis through renormalization techniques. All nets in this family are self-similar and some are fractals - possessing a finite fractal dimension - while others are small world (their diameter grows logarithmically with their size) and are infinite-dimensional. We show how a useful measure of "transfinite" dimension may be defined and applied to the small world nets. Concerning multiscaling, we show how first-passage time for diffusion and resistance between hub (the most connected nodes) scale differently than for other nodes. Despite the different scalings, the Einstein relation between diffusion and conductivity holds separately for hubs and nodes. The transfinite exponents of small world nets obey Einstein relations analogous to those in fractal nets.Comment: Includes small revisions and references added as result of readers' feedbac

    Clone size distributions in networks of genetic similarity

    Get PDF
    We build networks of genetic similarity in which the nodes are organisms sampled from biological populations. The procedure is illustrated by constructing networks from genetic data of a marine clonal plant. An important feature in the networks is the presence of clone subgraphs, i.e. sets of organisms with identical genotype forming clones. As a first step to understand the dynamics that has shaped these networks, we point up a relationship between a particular degree distribution and the clone size distribution in the populations. We construct a dynamical model for the population dynamics, focussing on the dynamics of the clones, and solve it for the required distributions. Scale free and exponentially decaying forms are obtained depending on parameter values, the first type being obtained when clonal growth is the dominant process. Average distributions are dominated by the power law behavior presented by the fastest replicating populations.Comment: 17 pages, 4 figures. One figure improved and other minor changes. To appear in Physica

    Network analysis identifies weak and strong links in a metapopulation system

    Get PDF
    The identification of key populations shaping the structure and connectivity of metapopulation systems is a major challenge in population ecology. The use of molecular markers in the theoretical framework of population genetics has allowed great advances in this field, but the prime question of quantifying the role of each population in the system remains unresolved. Furthermore, the use and interpretation of classical methods are still bounded by the need for a priori information and underlying assumptions that are seldom respected in natural systems. Network theory was applied to map the genetic structure in a metapopulation system by using microsatellite data from populations of a threatened seagrass, Posidonia oceanica, across its whole geographical range. The network approach, free from a priori assumptions and from the usual underlying hypotheses required for the interpretation of classical analyses, allows both the straightforward characterization of hierarchical population structure and the detection of populations acting as hubs critical for relaying gene flow or sustaining the metapopulation system. This development opens perspectives in ecology and evolution in general, particularly in areas such as conservation biology and epidemiology, where targeting specific populations is crucial

    Magic Supergravities, N= 8 and Black Hole Composites

    Get PDF
    We present explicit U-duality invariants for the R, C, Q, O$ (real, complex, quaternionic and octonionic) magic supergravities in four and five dimensions using complex forms with a reality condition. From these invariants we derive an explicit entropy function and corresponding stabilization equations which we use to exhibit stationary multi-center 1/2 BPS solutions of these N=2 d=4 theories, starting with the octonionic one with E_{7(-25)} duality symmetry. We generalize to stationary 1/8 BPS multicenter solutions of N=8, d=4 supergravity, using the consistent truncation to the quaternionic magic N=2 supergravity. We present a general solution of non-BPS attractor equations of the STU truncation of magic models. We finish with a discussion of the BPS-non-BPS relations and attractors in N=2 versus N= 5, 6, 8.Comment: 33 pages, references added plus brief outline at end of introductio

    Vertex routing models

    Full text link
    A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a non-zero information centrality to be extensive/sub-extensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results on the information flow in social networks are discussed.Comment: 12 pages, 6 figure

    Inappropriate medication use among the elderly: a systematic review of administrative databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inappropriate medication use (IMU) by elderly people is a public health problem associated with adverse effects on health. There are a number of methods for identifying IMU, some involving clinical judgment and others, consensually generated lists of drugs to be avoided. This review aims to describe studies that used information from insurance company and social security administrative databases to assess IMU among community-dwelling elderly and to present the risk factors most often associated with IMU.</p> <p>Methods</p> <p>The paper search was conducted in Medline and Embase, using descriptors combined with free terms in the title or abstract. The limits applied were: publication date from January 1990 to June 2010, species (human) and publication type (excluding editorials, letters and reviews). Excluded were: case studies; studies in hospitals, nursing homes, or hospital emergency departments; studies of specific drugs or groups of drugs; studies exclusively of subgroups of ill, frail elderly or rural populations. Additional studies were identified from reference lists. Data were selected and extracted after independent reading by two of the authors, with disagreements resolved by a third author. The primary outcome assessed was prevalence of IMU, defined as the proportion of elderly who received at least one inappropriate medication.</p> <p>Results</p> <p>Of the 628 studies, 19 met the inclusion criteria, 78.9% of them conducted in the USA. All papers included used explicit criteria of inappropriateness, most commonly Beers criteria (73.7%) in their three versions (1991, 1997 and 2002). Other methods used included Zhan, which is derived from on Beers criteria and was applied in 21% of the papers selected. The study found that prevalence of IMU ranged from 11.5% to 62.5%. Only 68.4% of the studies included examined inappropriate use-related factors, the most important being female sex, advanced age and larger number of drugs.</p> <p>Conclusions</p> <p>The results show that the prevalence of IMU among community-dwelling elderly is high and depends partly on the method used to evaluate improper use. Besides the diversity of methods, other factors, such as patient sex, age and number of drugs used concurrently, appear to have influenced the estimates of IMU.</p

    Evolutionary and Ecological Trees and Networks

    Get PDF
    Evolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.Comment: 6 pages, 5 figures. To appear in Proceedings of the Medyfinol06 Conferenc

    Wushu as a system moral and physical self-improvement

    Full text link
    The article examines the role of health education system Wushu in self-knowledge based on the concepts of human Shaolin schoolsВ статье рассматривается роль оздоровительно-образовательной системы Ушу в самопознании человека на основе концепций шаолиньских шко

    Percolation in Hierarchical Scale-Free Nets

    Full text link
    We study the percolation phase transition in hierarchical scale-free nets. Depending on the method of construction, the nets can be fractal or small-world (the diameter grows either algebraically or logarithmically with the net size), assortative or disassortative (a measure of the tendency of like-degree nodes to be connected to one another), or possess various degrees of clustering. The percolation phase transition can be analyzed exactly in all these cases, due to the self-similar structure of the hierarchical nets. We find different types of criticality, illustrating the crucial effect of other structural properties besides the scale-free degree distribution of the nets.Comment: 9 Pages, 11 figures. References added and minor corrections to manuscript. In pres
    corecore