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ABSTRACT

We present explicit U-duality invariants for the R,C,Q,O (real, complex, quaternionic and
octonionic) magic supergravities in four and five dimensions using complex forms with a reality
condition. From these invariants we derive an explicit entropy function and corresponding
stabilization equations which we use to exhibit stationary multi-center 1/2 BPS solutions of
these N = 2 d = 4 theories, starting with the octonionic one with E7(−25) duality symmetry.
We generalize to stationary 1/8 BPS multicenter solutions of N = 8, d = 4 supergravity, using
the consistent truncation to the quaternionic magic N = 2 supergravity. We present a general
solution of non-BPS attractor equations of the STU truncation of magic models. We finish
with a discussion of the BPS-non-BPS relations and attractors in N = 2 versus N = 5, 6, 8.
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1 Introduction

The purpose of this paper is to present explicit stationary multicenter solutions of N = 8, d = 4
supergravity [1] and all magic N = 2 supergravities [2]. All these models are associated with
the Jordan algebras of 3×3 Hermitian matrices: JR

3 , JC
3 , JQ

3 , JO
3 and JOs

3 . Here A = R,C,Q,O
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are the four division algebras, with dim A = 1, 2, 4, 8, while Os is a the split form of O

[3] with a quadratic norm invariant under O(4, 4) (the indefinite signature means this is no
longer a division algebra). The octonionic magic N = 2 model goes by the name exceptional
since it is the only one of the four magic N = 2 supergravities which is not known to be a
consistent reduction of N = 8: it’s defining Jordan algebra JO

3 involves the real octonions with
a quadratic norm invariant under O(8) [3], and is the only algebra mentioned above which
one cannot get from truncating JOs

3 . Note that the connection to Jordan algebras based on
the division algebras defines a relation between the four N = 2 magic supergravities [2] and
the magic square [4]. From a physics perspective, the main feature of the N = 8 and the
magic N=2 supergravities which interests us is that for each case all the vector fields, including
the graviphoton, transform in a single irreducible representation of U-duality group; these
symmetries place strong constraints on the entropy formula and the stabilization equations
derived from it.

The black hole entropy formula for N = 2 supergravities based on symmetric spaces is either
known or can be established. We extend this list to include magic supergravities, for which we
construct these entropies. We can then give a complete list of all symmetric spaces with their
entropy formulas.

The duality symmetry of N = 8, d = 4 and d = 5 supergravities is E7(7) and E6(6), respec-
tively. The duality symmetry of the exceptional magic N = 2, d = 4 and d = 5 supergravities is
E7(−25) and E6(−26), respectively. The number in the brackets stands for the difference between
the number of non-compact minus compact generators. For example, in E7(7) and in E7(−25) the
total number of non-compact and compact generators of E7 is the same, namely, 70+63 = 133
and 54 + 79 = 133. However, the difference between them is either 70 − 63 = 7 for E7(7) or
54 − 79 = −25 for E7(−25).

For the octonionic N = 2 supergravity we will find a new explicit entropy function derived
from the quartic invariant of the fundamental 56-dimensional representation of E7(−25) and
the relevant “electric” and “magnetic” cubic invariants of E6(−26). This entropy function then
provide us with the most general explicit multicenter BPS solution of the octonionic (exceptional
magic) N = 2 supergravity in terms of a 56-dimensional harmonic function with an arbitrary
number of centers. We will also present explicit entropy formulas for all the remaining magic
supergravities.

Recently, the generalization of the N = 2 attractor equations in [5]-[8] was established
for N > 2 by a generalization of the special geometry symplectic structure to all extended
supergravities [9]. In particular, for N = 8 supergravity a simple set of algebraic equations was
established which describe regular BPS and non-BPS extremal black hole solutions. In this later
paper, a natural truncation of the N = 8 theory to it’s largest consistent N = 2 truncation,
the quaternion magic N = 2 supergravity, made it’s appearance. To proceed with an explicit
demonstration of stationary multicenter 1/8 BPS solutions of N = 8 d = 4 supergravity we
use this reduction to N = 2. Hence, in addition to the N = 8 model and the octonionic
N = 2 model, the N=2 magic supergravity based on the Jordan algebra of quaternions, JQ

3 , is
of particular interest in this paper.
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We will argue that our new solution of quaternionic supergravity, depending on a 32-
dimensional harmonic function with any number of centers, are also the most general 1/8 BPS
stationary multicenter solution of N = 8 d = 4 supergravity, up to an overall E7(7) rotation.

We also will analyse multiple relations between BPS and non-BPS solutions in N = 2 and
N = 5, 6, 8 supergravities. It is known that the same bosonic solution may be BPS or non-
BPS depending on how it is embedded in a given supergravity theory or how one identifies the
bosonic vector fields with the specific supersymmetric multiplets, see for example [10] where
many such examples were given. In some N = 8 examples in [10] the relation between BPS
and non-BPS solutions uses the same embedding but requires a flip of a sign from some of the
charges. More recently such examples were discovered in the context of non-supersymmetric
attractors, see e. g. [11].

We will describe the general solutions of N = 2 attractors and, in particular, the general
solution for non-BPS attractors of magic supergravities.

In summary, our paper is organized as follows. In section 2 we summarize and expand on
known results for multi-center solutions in N = 2 SUGRA with special emphasis on the role of
the a set of harmonic functions transforming in an irreducible representation of the U-duality
group. Writing down the metric, gauge and scalar fields depends crucially on a writing down a
quartic invariant, or an entropy function, constructed from this representation. In section 3 we
describe two approaches for writing down the quartic invariants for N = 8 and the magic N = 2
supergravities. The first approach uses connections to the five-dimensional U-duality group and
makes novel use of a set of complex matrices with a reality condition in expressing both the
entropy function and the attractor equations. The second approach stresses the connection of
our quartic invariant to a set of invariants of the six-dimensional U-duality group which allows
us to use real matrices (the quaternionic magic case is a pseudo-real exception). In section 4 we
develop, as an example for the material in sections 2 and 3, the solutions for BPS composites
of octonionic magic N = 2. Section 5 follows with a description of N=8 1/8 BPS composites in
terms of a quaternionic N = 2 sub-algebra. In section 6 we expand our circle of consideration
to non-BPS extremal multi-center solutions before closing with some final thought in section 7.

2 A description of stationary multicenter solutions:

N=2 black hole composites

The exact BPS multicenter stationary black hole solutions in N = 2 supergravity have been
worked out as a general case whenever there is a known expression for the explicit single center
black hole entropy, S(p, q), as a function of quantized charges[12]. The entropy formula is given
by the minimal value of the BPS black hole mass via

S(p, q) = πM2(p, q; t, t̄)|attr = πI1(p, q), (2.1)

where the moduli, t(p, q), t̄(p, q), are fixed near the black hole horizon by the attractor mech-
anism [5]-[8]. There are three invariants that the reader should be aware of in the context of
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black hole attractors, it is important not to confuse them:

• I1((p, q; t, t̄): This is the general symplectic invariant defined in [13, 6]. It can be written
explicitly as:

I1(p, q; t, t̄) = −1

2
(p q)M(N (t, t̄)) (p q)T = |Z(Γ)|2 + |DZ(Γ)|2. (2.2)

where N (t, t̄) is the metric on the vector fields. Here Z(Γ) = 〈Γ,Ω〉 and Γ = (pΛ, qΛ),
Ω = (LΛ,MΛ). This scalar quantity is an invariant of the group OSp(2(nv + 1),R) which
acts on both the charges and the symplectic sections. It is manifestly quadratic in the
charges and non-negative. Near the black hole horizon N = 2 supersymmetry is restored
and DZ = 0 which is equivalent to the requirement that

∂tI1(Γ; t, t̄) = 0 ∂t̄I1(Γ; t, t̄) = 0 (2.3)

This equation defines the moduli near the horizon as functions of charges, t(p, q), t̄(p, q).

• I1(p, q) = I1(p, q; t(p, q), t̄(p, q)): This is the entropy function, I1(Γ), derived from the
function above restricted to t’s and t̄’s implicitly defined in terms of p’s and q’s through
their attractor values. This scalar is no longer invariant under OSp(2(nv + 1),R) since
we have chosen particular values of t and t̄ for given p’s and q’s. It is, however, invariant
under the U-duality group if such exists, but it has no particular polynomial properties
as a function of the charges. The moduli near the horizon are defined by equation [6]

pΣ + i
∂I1(p, q)

∂qΣ
= 2iZ̄(Γ)LΣ , qΣ − i

∂I1(p, q)

∂pΣ
= 2iZ̄(Γ)MΣ (2.4)

which follows from DZ(Γ) = 0 at the horizon. The holomorphic special coordinates

tΛ = XΛ

X0 at the horizon follow by dividing eq. (2.4) on the zero component of the same
equation.

tΛ(p, q) =
pΛ + i∂I1(Γ)

∂qΛ

p0 + i∂I1(Γ)
∂q0

(2.5)

• J4(p, q): This is a quartic polynomial in the charges, invariant under a U-duality group.
It appears in all the theories discussed in this paper, it is related to the entropy function
via I1(p, q) =

√

|J4(p, q)|.

Using the entropy function, the equations of motion for general black hole solutions in
N = 2 supergravities were solved in [12, 14]. Examples of non-static multicenter solutions were
given earlier in [15] where it was also explained on the basis of these examples that the most
general expression for the metric can only depend on duality invariants, the Kähler potential
K(X, X̄) and the Kähler connection Aµ(X, X̄). The general form of multi-center BPS black
hole solutions was presented in [14].
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The explicit BPS multicenter stationary black hole solutions in N = 2 supergravity were
found in [12, 14]. One can solve the 1/2 BPS equations by introducing a harmonic symplectic
doublet:

H(~x) = (HΛ, HΛ) = h +
n

∑

s=1

Γs

|~x− ~xs|
. (2.6)

From BPS equations one can prove that this doublet is proportional to the imaginary part of
the covariantly holomorphic symplectic section Ω = (LΛ, MΛ):

H(~x) = 2Im 〈H(~x),Ω〉Ω ≡ i(HΛMΛ −HΛL
Λ
)Ω , 〈Ω,Ω〉 = −i (2.7)

We will refer to h and Γ as fundamentals since for the theories which appear in our paper they
transform as fundamentals under the E7 U-duality group. A symplectic invariant I1(Γ, t, t̄) is
now replaced by the ~x-dependent symplectic invariant I1(H(~x), t, t̄). The other basic ingredient
is the symplectic pairing of two charges which induces one on the harmonic functions:

〈Γ1,Γ2〉 = pΛ
1 q2Λ − pΛ

2 q1Λ →֒ 〈H1,H2〉.

Once equipped with these structures, one can prove that the BPS equations require that

〈H,DΩ〉 = 0 (2.8)

which results in
∂tI1(H(~x); t, t̄) = 0 ∂t̄I1(H(~x); t, t̄) = 0 (2.9)

This is the stabilization equation for the symplectic invariant which can also be translated into
a relation

I1((H(~x); t, t̄)|〈H(~x),DΩ〉=0 = I1((H(~x)) (2.10)

This leads to

HΣ + i
∂I1(H)

∂HΣ
= 2iZ̄(H)LΣ , HΣ − i

∂I1(H)

∂HΣ
= 2iZ̄(H)MΣ (2.11)

The special coordinates tΛ = XΛ

X0 solve the equations of motion, stabilization equations of the
same form as the attractor equations for moduli near the horizon, and are given by

tΛ(~x) =
HΛ + i∂I1(H)

∂HΛ

H0 + i∂I1(H)
∂H0

(2.12)

The stationary metric is

ds2
4 = −I−1

1 (~x)(dt+ ~ωd~x)2 + I1(~x)d~x
2, ∇× ~ω = 〈H,∇H〉. (2.13)

Note that e−2K(X,X̄) may or may not be equal to I1(~x), depending on the choice of the Kähler
gauge. The symplectic invariant I1 is invariant under Kähler transformations, K(t, t̄) →
K(t, t̄) + f(t) + f̄(t̄), whereas the Kähler potential can be changed by a sum of the holo-
morphic and anti-holomorphic function. In [14] an ansatz was used with K = −2U and
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H = iΩ0 − iΩ0, where Ω0 = (XΛ, FΛ) is the holomorphic section. This section also transforms
under Kähler transformations, Ω0 → Ω0e

−f(t). In [12] the ansatz for the harmonic doublet is
H = ie−U+K/2(e−iαΩ0 − eiαΩ0) where α is the argument of the central charge. We prefer to
codify the solutions by the choice of the harmonic function at infinity, h. Using this boundary
value, we can give the values of the special coordinates, the metric and vector field strength and
do not have to define combinations which are not invariant under Kähler transformations. For
example, the relation between our h and the quantities in [12] is h = (e−iαeK/2Ω0)∞. In fact,
only the product of all 3 terms is invariant under Kähler transformations. Therefore we can
simply codify our solution with arbitrary h. Note also that in our equation (2.11) the analogous
term Z̄(H)LΣ is Kähler invariant since the transformations on Z̄(H) and on L cancel and we
do not have to identify these terms separately.

The integrability condition for the multi-center solution is

〈H,△H〉 = 0 ⇔ 〈H(~xs),Γs〉 = 0 ⇔
n

∑

t=1

〈Γs,Γt〉
|~xs − ~xt|

+ 〈Γs,h〉 = 0 (2.14)

Hence when our generic set of n+1 fundamentals, (Γs,h), satisfies the integrability conditions,
we constrain the distances between the Γs fundamentals, |~xs − ~xt|. Only when two of these
fundamental charge vectors are mutually local is their relative distance unconstrained. For the
case when all the fundamentals are mutually local there are no constraints on the distances;
they are just moduli.

The fundamental which sets the asymptotic behavior, h, also must satisfy some conditions
if the metric is to have the correct normalization and the integrability conditions are to be
solved:

I1(h) = 1, < h,Γ >= 0, (Γ =
∑

s

Γs) (2.15)

The vector fields in electric basis, using a mixture of spherical coordinates (rs, θs, φs) around
each center ~xs, are:

AΛ = ∂HΛ

(

ln I1(H)
)

(dt+ ω) −
∑

s

cos θs dφs ⊗ ΓΛ. (2.16)

The features of the geometry at very large |~x| ≫ |~xs − ~xt| can be read off from the asymptotic
form of the solution. In this approximation

H(~x) ≈ h +
Γ

|~x| , Γ =

n
∑

s=1

Γs (2.17)

and

~ω ≈
∑

s<t

〈Γs,Γt〉 ~est ×
~x

|~x| , ~est =
~xs − ~xt

|~xs − ~xt|
(2.18)

Far from the core, this looks like a spherically symmetric black hole (see [16] for more details):

ds2
4 = −e2Udt2 + e−2Ud~x2 , e−2U(~x) = I1

(

h +
Γ

|~x|
)

(2.19)
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whose entropy is equal to
S(Γ) = πI1(Γ). (2.20)

Note that any measured angular momentum derived from our expansion of ω in (2.18) comes
from terms which are order 1/|~x|2 in the metric and should be matched with a measurement
at a similar order for the dipole moments of the gauge fields in (2.16). Thus there is no
contradiction with our knowledge that simple charged supersymmetric black holes have no
angular momentum; if you measure angular momentum you also measure dipoles.

To recap, we would like to stress the special features of these N = 2 solutions. For a solution
with n centers we needed n+ 1 constant fundamentals (symplectic doublets) :

h = (hΛ, hλ) , Γs = (pΛ, qΛ)s s = 1, . . . , n. (2.21)

giving these important qualities to our solutions:

• An attractor at infinity: This means that the values of all our special coordinates at infinity
are specified by the values of the 1st fundamental, h and are completely independent of
all the other fundamentals, Γs. This follows from the limit of eq. (2.12) at infinity.

tΛ(~x)||~x|→∞ →
hΛ + i∂I1(h)

∂hΛ

h0 + i∂I1(h)
∂h0

(2.22)

• An attractor at each center: this is a familiar feature from BPS 1-center black holes
where the values of the moduli near the black hole horizon are independent on the values
of moduli at infinity. In our case, with many centers, the values of special coordinates at
each center are independent of all fundamentals except the one at the given center. The
limit of eq. (2.12) near each center is given by

tΛ(~x)||~x|→|~xs| →
ΓΛ

s + i∂I1(Γs)
∂ΓsΛ

Γ0
s + i∂I1(Γs)

∂Γs0

(2.23)

Apart from the nice clarity of the attractor behavior above, at each center and at infinity,
writing our solution in terms of n+1 fundamentals of our duality group yields two more simple
features not yet discussed in the literature:

• The constant term in our integrability condition, (2.14), at each center is simply written
in terms of the symplectic pairing between h and Γs without any reference to the phase
of the central charge such as in [14, 12] (this simplification is also observed in [16]). This
makes the construction, in principle, easier to extend to a non-BPS form.

• The mass of the black hole in terms of the charges and asymptotic moduli can be written
very compactly in terms of h and Γ by expanding I1(~x) to leading order in 1/|~x|.
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In what follows we will find that for most of the magic supergravities cases it is most
convenient to generalize the form of the black hole composite solutions above: magic symmetries
are best manifested using a double index, i.e matrix, notation instead of a single index Λ in
coordinates and charges. We write real quantities, such as charges, as constrained complex
matrices with a reality condition of type, t∗ = Ω tΩT , and holomorphic quantities using the
associated notion of complex conjugation.

3 Black hole entropies of magic N = 2 and of N = 8

supergravities

In order to find black hole composite solutions in four dimensions we require an explicit entropy
formula in terms of generic black hole charges. Such formulas are known for symmetric spaces;
the appropriate N = 2 supergravity coupled to vector multiplets are classified in [17]-[19].

These models include the reducible spaces
[

SU(1,1)
U(1)

]3

, SU(1,1)
U(1)

× SO(P+2,2)
SO(P+2)×SO(2)

, and the complex

projective space SU(1,n)
SO(n)×U(1)

. In Table 2 of [19] the first two cases are L(0, 0) and L(0, P )
respectively. For these three classes of N = 2 d = 4 supergravities the entropy formula is
known for generic set of charges since the attractor equations [5]-[8] have been solved for these
three spaces in [20]-[22], respectively. The remaining symmetric spaces for which the entropy
formulas have not been established so far are connected to Jordan algebras, according to [17].
These are the magic supergravities.

We will present here the new d = 4 entropy formulas for magic N = 2 supergravities using
the relation between the d = 4, d = 5 and d = 6 dualities 1. We will also give some new forms
of the entropy formula for N = 8 supergravity which can be easily compared with the entropy
of the octonionic N = 2.

3.1 Universal d = 4 ⇔ d = 5 relation

Consider the splitting
G4 → G5 × SO(1, 1) (3.1)

where G5 is the duality group in d = 5 and G4 is the duality group in d = 4. The quartic
invariant of the relevant duality groups G4 can be constructed using the cubic invariant of
G5. In all cases we have to split the total set of electric and magnetic charges into the zero
component and the rest,

(p, q) = (p0, pI ; q0, qI) , I = 1, . . . , nv (3.2)

This splitting is of the type
Rp,q = Rp + 1p + R′

q + 1′
q (3.3)

1Recently the d = 4 ⇔ d = 5 relation between particular black hole solutions has been used in counting of
the BPS black hole degeneracy [23].
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where Rp is the five-dimensional representation and R′
q is its contravariant representation:

Rp → (pI) R′
q → (qI) (3.4)

1p → (p0) 1′
q → (q0) (3.5)

All of these are real representations of G4 or G5 as appropriate. In the magic models Rp,q refers
to the following representations:

JO
3 → 56 fundamental of E7(−25)

JQ
3 → 32 chiral spinor of SO∗(12) (3.6)

JC
3 → 20 threefold antisymmetric (selfdual) of SU(3, 3)

JR
3 → 14′ threefold antisymmetric traceless of Sp(6,R)

The general formula for the quartic invariant of the four-dimensional duality groups G4 related
to its d = 5 cubic invariants is:

J4(p
0, q0, p

I , qI) = −(p · q)2 + 4
(

q0I3(p) − p0I3(q) + {I3(q), I3(p)}
)

. (3.7)

where the cubic invariants of the five-dimensional duality groups G5 are given by

I3(p) =
1

3!
dIJKp

IpJpK , I3(q) =
1

3!
dIJKqIqJqK (3.8)

and the scalar product of charges and the Poisson bracket of cubic invariants are defined as
follows

p · q ≡ p0q0 + pIqI , {I3(q), I3(p)} ≡ ∂I3(q)

∂qI

∂I3(p)

∂pI
(3.9)

This structure of quartic invariants in terms of the cubic ones is valid for all cubic systems,
where both dIJK as well as dIJK are known, in particular, it can be used for N = 8 and for
all the magic N = 2 theories. Each model corresponds to specific values for dIJK and dIJK in
equation (3.8) which form the cubic invariants of G5. The quartic formula above can be derived
following [3, 24] using the Freudenthal triple system that applies for any decomposition of the
type given in eq.(3.1). The properties of the coset spaces which one encounters in magical
supergravities can be inferred from [25, 26].

For N = 8 the classic example is E7(7) → E6(6)×SO(1, 1). The quartic invariant of the E7(7)

and the cubic invariant of the E6(6) have been in the literature a long time: they were used for
the single black hole entropy in N = 8, d = 4, [27, 28] and N = 8, d = 5, [7], respectively. In
this section, we will exploit the relationship between N = 8 and the octonionic magic N = 2
to efficiently present invariants for all the magic supergravities. We can use these, in turn, to
write explicit black hole composite solutions.

Let us quickly review the magic N = 2 supergravities. These are labeled using the four
division algebras A: dimA is 1 for real numbers R, 2 for complex numbers C, 4 for quaternions
H, and 8 for octonions O. N = 8 supergravity corresponds to the split octonions, which do not
form a division algebra.
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The scalars in N = 8 supergravity are in the cosets G5

H5
=

E6(6)

Usp(8)
and G4

H4
=

E7(7)

SU(8)
in d = 5 and

d = 4, respectively. In each case, the vector fields are in the real representations 27 of E6(6)

and 56 of E7(7).

For magic supergravities the cosets in d = 5 are, in the order of increasing dimension of the
division algebra dimA:

d = 5 :
G5

H5

⇒ SL(3; R)

SO(3)
,

SL(3; C)

SU(3)
,

SU∗(6)

Usp(6)
,

E6(−26)

F4

(3.10)

and in four-dimensional theories

d = 4 :
G4

H4
⇒ Sp(6; R)

SU(3) × U(1)
,

SU(3, 3)

SU(3) × SU(3) × U(1)
,

SO∗(12)

SU(6) × U(1)
,

E7(−25)

E6 × U(1)
(3.11)

The number of vector fields in the five-dimensional versions of magic supergravities is

d = 5 , nv = 3(dimA + 1) ⇒ nv = 6, 9, 15, 27 for R,C,H,O, (3.12)

with one of the vectors coming from the gravity multiplet and transforming as a singlet of H5.
The “magic” comes from representing the charges for all these vector fields as real parameters
of a self-adjoint 3x3 matrix over the appropriate algebra (elements of the Jordan algebra JA

3 ).
In d = 4, Kaluza-Klein reduction adds one more vector field, and so the numbers are:

d = 4 , ñv = 3(dimA + 1) + 1 ⇒ ñv = 7, 10, 16, 28 for R,C,H,O, (3.13)

with one of the vectors coming from the gravity multiplet and transforming as a singlet of H4.

We will demonstrate two complementary methods for establishing the explicit form of the
quartic/cubic invariants and related d=4,5 black hole entropies.

1. Starting in five-dimensions, we use the manifest five-dimensional duality group G5 for all
of our models, with E6(6), E6(−26), SU

∗(6), SL(3; C), SL(3; R)-symmetry, and the simple
features of the corresponding Jordan algebras to write down the appropriate cubic invari-
ants. Operationally, this entails representing the real coordinates of the N=8 theory and
the very special real geometry of the N = 2 theories in terms of complex anti-symmetric
matrices obeying a reality condition. We then obtain the holomorphic coordinates of the
corresponding four dimensional scalar manifold geometry by relaxing the reality condition.
To the reader, this may seem different from the well known case where one starts with
real matrices in d = 5 complexify them term by term to get the holomorphic coordinates
in d = 4. In fact, the difference is cosmetic rather than structural, due to the convenience
of using a double index notation; we will make this clear in an explicit mathematical way.

2. We rearrange our charges and coordinates using just G6 manifestly-symmetric represen-
tations. In this case we have to further split the five-dimensional duality symmetry down
to the six-dimensional one:

G5 ⇒ G6 × SO(1, 1) (3.14)
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The duality group, G6, for magic supergravities is SO(1, dimA+1), similar to the duality
group SO(5, 5) for the N = 8 model. For a IIB oxidation, tensor charges (self-dual
strings) will appear in vector representations of G6 and vector charges (point charges
and their magnetic duals) will appear as real spinors. The advantage to this method is
that, in all but one case, we can reconstruct the cubic invariant in d=5 using just the
metric and gamma matrices of G6. For the quaternionic magic the eight dimensional real
representation of SO(1, 5) is really the combination of 2 pseudo-real spinors of the same
chirality; the answer in this case is only slightly more complicated. In the first cases
(dim A 6= 4), the d=4 holomorphic coordinates are a simple complexification of the d=6
real coordinates. The details for the more subtle quaternionic case are presented in the
Appendix B.

While overall not as manifestly symmetric, the six-dimensional approach provides us
with more than a cross-check for our first method. The choice of splitting for G5 →
G6 × SO(1, 1) also yields some valuable insight into the oxidation process, e.g. the split
into tensor and vector multiplets above.

3.2 G5 manifestly-symmetric entropy of d = 4 BPS black holes

Our goal at this point is to develop a simple expression for the cubic invariants of the five-
dimensional magic supergravity; using these we can then extract a G5 manifestly-symmetric
formula for the quartic invariant in four dimensions using the formula in (3.7). A very efficient
way to accomplish our task is to use the relationship of these theories to Jordan algebras and
the N=8 maximally supersymmetric theory.

Let us demonstrate with the familiar case of N = 8 supergravity

E7(7) → E6(6) × SO(1, 1) (3.15)

and the octonionic magic N = 2 supergravity with

E7(−25) → E6(−26) × SO(1, 1). (3.16)

The respective five-dimensional charge spaces for these theories correspond to the Jordan alge-
bras JOs

3 and JO
3 . We can represent the 27 elements for both algebras conveniently using the

(faithful) traceless anti-symmetric representations of Usp(8) and Usp(6, 2). This is similar in
spirit to the use of SU(8) and SU(6, 2) to construct quartic invariants in [33], but our results
for the cubic invariants of E6(6) and E6(−26) do not descend straightforwardly from these quartic
invariants. It would be interesting to have a better understanding of the connection between
the two.

We will now quickly review the details necessary to build these representations. We start
by defining [25, 26] the (8 × 8) symplectic matrix Ω and a metric preserved by Usp(8) and
Usp(6, 2)

Ω = I4 ⊗
(

0 −1
1 0

)

, K(a,b) = α⊗
(

1 0
0 1

)

(3.17)
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which will allow us to treat both cases, E6(6) in Usp(8) basis and E6(−26) in Usp(6, 2) basis,
simultaneously. The (4 × 4) matrix α is

α =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









for Usp(8) , α =









−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









for Usp(6, 2), (3.18)

and α = αt, α2 = 1. We will label the two different metrics either K(0,4) or K(3,1).

We are now ready to exhibit the real representation 27 of E6(6), E6(−26) taken in the
Usp(8), Usp(6, 2) basis by using the map tI → tab where tab is the antisymmetric traceless
matrix, tab = −tba, Tr t ≡ tabΩab = 0 satisfying a reality condition

t∗ab = Ω̃aa′Ω̃bb′t
a′b′ ⇔ t∗ = Ω̃ t Ω̃T , (3.19)

where

Ω̃ =

(

0 −α
α 0

)

= KΩ =

(

α 0
0 α

) (

0 −I
I 0

)

, Ω =

(

0 −I
I 0

)

(3.20)

With our framework, we quickly write down our cubic invariant as:

dIJKt
ItJtK = Tr(Ω tΩ tΩ t) (3.21)

which is a real polynomial. For the contragradient representation we can take

dIJKt′It
′
Jt

′
K = Tr(Ω′ t′ Ω′ t′ Ω′ t′) , t′ = t′ab , Ω′ = ΩT. (3.22)

Using these representations, the cubic invariants of E6(6) and E6(−26) in Usp(8) and Usp(6, 2)
basis, respectively, are given by

I3(p) =
1

3!
Tr(Ω pΩ pΩ p) , I3(q) =

1

3!
Tr(Ω′ qΩ′ qΩ′ q) (3.23)

Here

p∗ = Ω̃ p Ω̃T , T r (pΩ) ≡ pabΩab = 0 , q∗ = Ω̃ q Ω̃T , T r (qΩ) = 0 . (3.24)

The reality and trace condition give exactly 27 real entries for the complex matrices pab and
qab; the complex two index notation is simply a convenient way to represent the real numbers
pI and qI . The only difference between the the cubic invariants of E6(6) and E6(−26) comes from

the reality condition, driven by a different choice of Ω̃ coming from different versions of the
metric K. The the fact the cubic invariants are not explicitly different in terms of complex
matrices, but only different through their respective reality constraint is a direct consequence
of the fact that E6(6) and E6(−26) are different real forms of the same complex E6 algebra.

The reality constraint (3.19) and the tracelessness condition tabΩab = 0 can be solved and
one finds that

Re t =

(

A1 S
−αSα αA1α

)

, Im t =

(

A2 A
αAα −αA2α

)

(3.25)
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where St = αSα, Tr S = 0 and At = −αAα. This means that Re t depends on n2 − 1 = 15
real entries since A1 and A2 and Aα are antisymmetric, and Sα is symmetric. Im t depends on
n2 − n = 12 real entries. Together t has 27 real entries. The same forms apply for the electric
and magnetic charges, in agreement with nv = 3(dimA + 1) = 3(8 + 1) for octonions.

If we want to use only real entries for magnetic and electric charges, where p = Re p+iIm p =
p1 + ip2, we can use

p∗ = Ω̃ p Ω̃T ⇒ p1 = Ω̃p1Ω̃
T , p2 = −Ω̃p2Ω̃

T (3.26)

The cubic invariants in terms of the real entries are

I3(p) =
1

3!
Tr(Ω pΩ pΩ p) =

1

3!
Tr(Ω p1 Ω p1 Ω p1) −

1

2
Tr(Ω p1 Ω p2 Ω p2) (3.27)

The electric charges are in the contragradient representation, and so we expand q as q =
Re q − i(−Im q) = q1 − iq2, with the analogous equations to eqs. (3.26) and (3.27).

Three other G5-invariant magic entropies

Consider the quaternionic magic case with G5 = SU∗(6), H5 = Usp(6). Our charges are
in the 15, the two-fold anti-symmetric representation SU∗(6), which decomposes as the 14

traceless anti-symmetric of Usp(6) plus a singlet. This anti-symmetric representation of Usp(6)
is not the truncation to the common 6 × 6 matrix of the two types of 8× 8 matrices above (as
opposed to what happens in [33]).

We write the quaternionic magic charges using the matrix UΛΣ, U = −U t with the reality
condition U∗ = ΩUΩT , giving us nv = 3(dimA+1) = 3(4+1) = 6·5

2
, so we that we end up with

15 electric and 15 magnetic charges. The real cubic forms are:

1

3!
dIJKt

ItJ tK =
1

3! · 23
ǫΛΣ∆ΓΠΩU

ΛΣU∆ΓUΠΩ ≡ Pf U (3.28)

I3(p) =
1

3! · 23
ǫΛΣ∆ΓΠΩp

ΛΣp∆ΓpΠΩ ≡ +Pf p (3.29)

I3(q) =
1

3! · 23
ǫΛΣ∆ΓΠΩqΛΣq∆ΓqΠΩ ≡ −Pf q (3.30)

In terms of real charges p1 = Ω p1Ω
T and p2 = −Ω p2Ω

T where p∗ = Ω pΩT and p = p1 + ip2 we
have

I3(p1, p2) =
1

3! · 23
ǫΛΣ∆ΓΠΩ p

ΛΣ
1 (p∆Γ

1 pΠΩ
1 − 3p∆Γ

2 pΠΩ
2 ) (3.31)

and analogous for q = q1 − iq2. When we use these expressions (cf. section 5) to obtain a
quartic invariant, we get an expression which matches exactly with the quartic invariant for
quaternionic magic in [33]. This quartic invariant also appears explicitly in [35] within the
context of N = 6 supergravity.
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The next case is complex magic with G5/H5 = SL(3,C)/SU(3) and nv = 3(2 + 1) = 9. We
truncate UΛΣ by writing it in terms of a symmetric 3x3 matrix U IĪ :

UΛΣ → U IĪ , UΛΣ → UIĪ . (3.32)

The reality condition makes UIĪ hermitian (the trace is an invariant ofH5). The cubic invariants
in term of real charges, where pIĪ = Re pIĪ +iIm pIĪ = pIĪ

1 +ipIĪ
2 and qIĪ = Re qIĪ −i(−Im qIĪ) =

q1 IĪ − i q2 IĪ are:

I3(p) =
1

3!
ǫIJKǫĪ J̄K̄ pIĪpJJ̄pKK̄ = det p (3.33)

=
1

3!
ǫIJKǫĪ J̄K̄ pIĪ

1 (pJJ̄
1 pKK̄

1 − 3pJJ̄
2 pKK̄

2 )

I3(q) =
1

3!
ǫIJKǫĪ J̄K̄qIĪqJJ̄qKK̄ = det q (3.34)

=
1

3!
ǫIJKǫĪ J̄K̄ q1 IĪ(q1 JJ̄q1 KK̄ − 3q2 JJ̄q2 KK̄).

The last case, real magic has tI in 6 of SL(3,R), and nv = 3(1 + 1) = 6.

1

3!
dIJKt

ItJtK =
1

3!
ǫLMN ǫPQRt

LP tMQtNR = det t. (3.35)

Here the symmetric matrix tLP = tPL is real. The cubic invariants in terms of real charges are

I3(p) =
1

3!
ǫLMN ǫPQR p

LPpMQpNR , I3(q) =
1

3!
ǫLMN ǫPQRqLP qMQqNR. (3.36)

3.3 Magic prepotentials from d = 5 and the attractor equations

To connect the d = 5 construction with real coordinates Y I to four-dimensional holomorphic
coordinates XI we have to give a prescription for complexifying the real coordinates. We
can then present the holomorphic prepotentials F = I3(X1,X2)

X0 of d = 4 N = 2 supergravities
for all of our models. For the magic supergravities, the prescription is sweet and simple: we
just relax the reality condition on our defining matrices, keeping it only when we need to
define a complex conjugate quantity. In the quaternionic case, for example, we take our reality-
constrained matrices Y and split them once again into real matrices Y = Y1+iY2 satisfying Y1 =
ΩY1Ω

T , Y2 = −ΩY2Ω
T . Regular complexification now requires us to turn the real matrices Y1, Y2

into complex matrices X1, X2 satisfying the linear constraint X1 = ΩX1Ω
T , X2 = −ΩX2Ω

T .
If we write X = X1 + iX2 we now have a new complex matrix independent of any linear
constraints, the new conjugate variable is X = X∗

1 + iX∗
2 = Ω(X∗)ΩT .

To summarize, in general we apply the standard complexification to our real coordinates Y1

and Y2 to get a holomorphic coordinate X = X1 + iX2. In the bi-index notation, what remains
of the reality constraint on Y is a different definition for complex conjugation on our vector
space:

=⇒ Y ΛΣ → XΛΣ, X
ΛΣ

= Ω(XΛΣ)∗ΩT . (3.37)
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Thus the “bar” operation is defined to be not just complex conjugation but also a matrix
multiplication as shown above.

The prepotentials for all magic N = 2 supergravities the their cubic invariant in five dimen-
sions. These prepotentials may be used in future for the analysis of the Legendre transform
and relation to the generalized Hitchin functional, as in [29],[24].

JO ⇒ F (X) =
1

3!X0
Tr(Ω(X1 + iX2)Ω(X1 + iX2)Ω(X1 + iX2)) =

1

3!X0
[Tr(ΩX1 ΩX1 ΩX1) − 3Tr(ΩX1 ΩX2 ΩX2)] (3.38)

X1 = Ω̃X1Ω̃
T , T r(X1Ω) = 0 , X2 = −Ω̃X2Ω̃

T , T r(X2Ω) = 0 . (3.39)

Here X1 and X2 are the complexified fields corresponding to the real and imaginary parts of
the antisymmetric traceless matrix Y ab with Y ∗ = −Ω̃Y Ω̃, a, b = 1, . . . , 8.

JQ ⇒ F (X) =
1

X0
Pf (X1 + iX2) =

1

3! · 23X0
ǫΛΣ∆ΓΠΩX

ΛΣ
1 (X∆Γ

1 XΠΩ
1 − 3X∆Γ

2 XΠΩ
2 ) (3.40)

Here X1 and X2 are antisymmetric and X1 = ΩX1Ω
T , X2 = −ΩX2Ω

T , with Λ,Σ = 1..6.

JC ⇒ F (X) =
1

X0
det(X1 + iX2) =

1

3!X0
ǫIJKǫĪ J̄K̄X

IĪ
1 (XJJ̄

1 XKK̄
1 − 3XJJ̄

2 XKK̄
2 ) (3.41)

Here X1 is symmetric and X2 is antisymmetric. We can put them together in a single 3x3
matrix, X in the (3, 3̄) representation of H4 = S(U(3) × U(3)).

JR ⇒ F (X) =
1

X0
detX =

1

3!X0
ǫLMN ǫPQRX

LPXMQXNR (3.42)

Here XLM is in the symmetric representation of H4 = U(3), L,M = 1, 2, 3.

In each case, the X0 field is the usual extra projective coordinate which is a singlet of H5.
We note the parallel with the five dimensional case. In that case, the real cubic invariant was
determined by a cubic invariant of the complex form of G5 plus a reality condition. Here the
holomorphic pre-potential is determined by a cubic invariant of H4 supplemented by a different
notion of complex conjugation.

For completeness we add here the prepotentials for other N = 2 cosets for which the entropy
formula is known. For the L(0, P ) models the holomorphic prepotential is

F (X) =
X

2X0
[Y rY sηrs] ηrs = (1,−1, . . . ,−1) , r, s,= 1, . . . , P + 2. (3.43)

The corresponding coset space in D = 4 is SU(1,1)
U(1)

× SO(2,P+2)
SO(2)×SO(P+2)

and in d = 5 we have

SO(1, 1)× SO(1,P+1)
SO(P+1)

and the entropy was found in [21].
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The case of the complex projective space SU(1,n)
SO(n)×U(1)

is described by a quadratic prepotential

F (X) =
−i
4

[(X0)2 −
i=n
∑

i=1

(X i)2] , (3.44)

the entropy was found in [22].

The BPS attractor equations for all cases can be nicely written by once more embedding
our charges into constrained complex matrices (here we use quaternionic magic to illustrate):

pΛΣ + 2i
∂
√

J4(p, q)

∂qΛΣ
= 2iZ̄LΛΣ (3.45)

In terms of strictly real charges p1, p2 and q1, q2 these equations can be rewritten as:

p1 + i
∂
√

I4(p, q)

∂q1
= iZ̄ [L+ ΩLΩT ] = 2iZ̄L1 (3.46)

p2 + i
∂
√

I4(p, q)

∂q2
= iZ̄ [L− ΩLΩT ] = 2iZ̄iL2 (3.47)

Solving these attractor equations yields (in terms of either the constrained complex form or
split real form of the charges):

tΛΣ =
XΛΣ

X0
→

pΛΣ + 2i
∂
√

J4(p,q)

∂qΛΣ

p0 + i
∂
√

J4(p,q)

∂q0

, t
ΛΣ

=
X

ΛΣ

X
0 →

pΛΣ − 2i
∂
√

J4(p,q)

∂qΛΣ

p0 − i
∂
√

J4(p,q)

∂q0

(3.48)

tΛΣ
1 =

XΛΣ
1

X0
→

pΛΣ
1 + i

∂
√

J4(p,q)

∂q1 ΛΣ

p0 + i
∂
√

J4(p,q)

∂q0

, tΛΣ
2 =

XΛΣ
2

X0
→

pΛΣ
2 + i

∂
√

J4(p,q)

∂q2 ΛΣ

p0 + i
∂
√

J4(p,q)

∂q0

(3.49)

where we also exhibit the matching anti-holomorphic equation to re-emphasize the different
complex conjugation. These equations are a slight generalization of the one in eq. (2.12) which
allow us accommodate a more algebraic notion of “reality” acting on matrices and will allow
us to present the black hole composite solutions for N = 8 and magic N = 2 supergravities.

Finally, we can give an explicit expression for the Kähler potential of all the magic su-
pergravities in terms of a modified notion of “reality” as follows. In standard holomorphic
coordinates, the Kähler potential depends on the imaginary section. We then get the usual
looking Kähler potential:

e−K =
i

3!
|X0|2 Tr

[

Ω(t− t̄)Ω(t− t̄)Ω(t− t̄)
]

. (3.50)

One has to keep in mind here that we use a definition of complex conjugation where our anti-
holomorphic special coordinates are related to the holomorphic as follows

t̄ = ΩT t∗Ω (3.51)
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This expression for the Kähler potential again shows that it is not invariant under Kähler
transformations. One can use the gauge X0 = 1, but in this gauge one doesn’t necessarily have
2U = K. Moreover, it is known from the example of the STU attractor that in this gauge e−2U

is not equal to eK , see [20]. On the other hand the freedom in the choice of the gauge for X0

may be used to identify K with 2U as in [14].

3.4 G6 manifestly-symmetric entropy of d = 4 BPS black holes

The explicit expressions for each case can be established using the very special real geometry
constructions of [18, 19]. The corresponding homogeneous special real spaces in five dimensions
(very special geometry) are

G5

H5

= L(P, 1), P = dimA = 1, 2, 4, 8. (3.52)

in the Table 2 of [19]. Their corresponding Kähler spaces with special geometry are our magic
cosets G4

H4
in d = 4. We uplift our models to d = 6 (2, 0) supergravities, following [30], [31] (see

also [34]). We introduce in d = 6 a number of tensor multiplets, Nt = dimA + 1, and a number
of vector multiplets Nv = 2dimA and we split the symmetric tensor dIJK as follows:

dIJK ⇒ (dzrs, drαβ) , dIJK ⇒ (dzrs, drαβ) (3.53)

where r = 0, . . . , dimA + 1, z = 1, α, β = 1, . . . , 2 dimA. This corresponds to the split of the
real five-dimensional coordinates into (z, br, aα) so that z is the KK singlet scalar, br is the

coordinate of the coset space SO(1,dimA+1)
SO(dimA+1)

and aα are spinors of SO(1, dimA + 1). We have an
analogous split for the electric and magnetic charges.

pI = (pz, pr, pα) , qI = (qz, qr, qα) , r = 0, . . . , dimA + 1, α = 1, . . . , 2 dimA (3.54)

For the L(0, P ) models one should take r, s = 0, . . . , P + 1 and pα = qα = 0, following Table 2
of [19]. The cubic invariants are

I3(p) =
1

2

(

pz ηrs p
r ps + (γr)αβ p

r pα pβ
)

(3.55)

I3(q) =
1

2

(

qz η
rs qr qs + (γr)αβ qr qα qβ

)

(3.56)

Here ηrs is the Lorentzian metric of SO(1, dimA+1) and (γr)αβ are the γ-matrices of the groups
SO(1, dimA + 1). The details magic quaternionic supergravity are given in Appendix A. For
the groups SO(1, 2), SO(1, 3) and SO(1, 9) we can have real spinors and therefore the cubic
invariants (3.55), (3.56) above applies to them.

The relation between the magic exceptional octonionic N = 2 and N = 8 supergravity has
to do with the change from the real octonions with the norm invariant under SO(8) to the split
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octonions with the norm invariant under SO(4.4). In d = 6 this means that

N = 2 octonionic magic, real octonions ⇒ SO(1, 9)

SO(9)
(3.57)

N = 8 octonionic, split octonions ⇒ SO(5, 5)

SO(5) × SO(5)
(3.58)

To find the cubic/quartic invariants of N = 8 theory in the G6 manifest basis all we have
to do it to take the cubic invariants for octonionic magic N = 2 in eq. (3.55) and (3.56) with
the associated metric ηrs for SO(5, 5) instead of that for SO(1, 9).The γ-matrices in the second
term of cubic invariants change accordingly so that the corresponding Clifford algebra has the
ηrs signature for SO(5, 5) instead of SO(1.9).

The case of quaternionic magic supergravity with SO(1, 5) ∼ SU∗(4) duality group we have
to treat separately. We present this case in Appendix A.

4 BPS composites of octonionic magic N = 2

Manifest E6(−26)

The quartic invariant of E7(7) is a well known invariant related to the entropy of N = 8
black holes. We would like to give a similar explicit formula for the entropy of the octonionic
magic N = 2 which is a quartic invariant of E7(−25). In this section we will extract this invariant
using the procedure given in sec. 3, but in more detail. We will then use this expression to
write down the general multi-black hole solution following the framework in sec. 2, with all the
modifications necessary to use our the bi-index formalism which proved so useful in deriving
the cubic and quartic invariants of octonionic magic.

Recapping the procedure in sec. 3, we introduce the charges with a d = 4 → d = 5
split corresponding to the E7(−25) → E6(−26) × SO(1, 1) split; in the N = 8 case this is an
E7(7) → E6(6) × SO(1, 1) split. The real 56 of E7(−25) which combines electric and magnetic
charges is split into 2 real charges p0, q0 and 54 electric and magnetic charges in the 27′ and
27 representations of E6(−26), written as representations of Usp(6, 2). This means we have a
complex antisymmetric skew-traceless pab = (pab

1 + ipab
2 ) and qab = (q1 ab − iq2 ab) satisfying a

reality constraint p∗ = Ω̃ p Ω̃T and analogous for q. Here

Ω̃ = K(3,1) Ω (4.1)

where the matrices K(3,1) and Ω are defined in eqs. (3.17), (3.18). Alternatively, one could use
the real charges, pab

1 , p
ab
2 and q1 ab, q2 ab, as is and lose explicit duality symmetry.

The quartic invariants of E7(7) and E7(−25) are both

J4(p
0, q0, p

ab, qab) = −(p · q)2 + 4
(

q0I3(p) − p0I3(q) + {I3(q), I3(p)}
)

. (4.2)
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with cubic invariants given by

I3(p) =
1

3!
Tr(Ω pΩ pΩ p) =

1

3!
Tr(Ω p1 Ω p1 Ω p1) −

1

2
Tr(Ω p1 Ω p2 Ω p2) (4.3)

I3(q) =
1

3!
Tr(Ω′ qΩ′ qΩ′ q) =

1

3!
Tr(Ω′ q1 Ω′ q1 Ω′ q1) −

1

2
Tr(Ω′ q1 Ω′ q2 Ω′ q2) (4.4)

and the scalar product of charges and the Poisson bracket of cubic invariants are defined as
follows

p · q ≡ p0q0 +
1

2
pabqab = p0q0 +

1

2
pab

1 q1 ab +
1

2
pab

2 q2 ab , (4.5)

{I3(q), I3(p)} ≡ 2
∂I3(q)

∂qab

∂I3(p)

∂pab
=

1

2

∂I3(q)

∂q1 ab

∂I3(p)

∂pab
1

+
1

2

∂I3(q)

∂q2 ab

∂I3(p)

∂pab
2

. (4.6)

All the formulas above with complex matrices are real due to the reality condition on the
charge matrices. We note that any derivatives we write in the octonionic case need to take into
account the fact that we differentiate with respect to skew-traceless matrices. This corresponds
to restricting the tangent space using the tracelessness condition and operationally gives the
following definition for the derivative:

∂pab

∂pcd
= δa

c δ
b
d − δa

d δ
b
c −

1

4
Ωab Ωcd. (4.7)

It would be interesting to understand exactly witch change of variable would be necessary to
match with our expression for the quartic invariant, J4, with the one in [33] written explicitly
in terms of four dimensional charges.

Overall, the only difference between the endpoint expressions for E7(7) and E7(−25) is exactly
in the reality constraint on the charges, i.e. which parts of p get slotted in p1 or p2 by our choice
of Ω̃:

N = 8 : E7(7) → E6(6) × SO(1, 1) ⇒ p = ± Ω̃T p∗ Ω̃ = K0,4ΩT p∗ ΩK0,4 (4.8)

N = 2 magic : E7(−25) → E6(−26) × SO(1, 1) ⇒ p = Ω̃T p∗ Ω̃ = ±K3,1ΩT p∗ ΩK3,1. (4.9)

Following sec. 2, to describe the BPS composites of octonionic magic N = 2 we need a
set of 1 + n fundamental 56-dimensional representations of E7(−25) . Here n is the number of
centers of our multicenter solution

h ≡ (h0, h0, h
ab, hab) , Γs ≡ (p0, q0, p

ab, qab)s a, b = 1, . . . , 8, s = 1, . . . , n. (4.10)

We introduce a 56-real-dimensional harmonic function in terms of two real harmonics and two
constrained complex matrix harmonics:

H(~x) = (H0, H0, H
ab, Hab) = h +

n
∑

s=1

Γs

|~x− ~xs|
. (4.11)
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Here we have introduced n constant E7(−25) fundamentals Γs ≡ (p, q)s with s = 1, . . . , n and
one constant E7(−25) fundamental, h ≡ (p∞, q∞) which is the asymptotic value of the harmonic
function. Note that once again “reality” for H in this notation means that (Hab, Hab) are
complex matrices, they satisfy the same reality condition as the corresponding charge matri-
ces. With the information above, we are almost ready to write down the solution. The final
ingredient we need is a definition of the symplectic invariant for our solution, which is:

< Γs,Γt >= ps · qt − pt · qs. (4.12)

We can now write the stationary metric for the BPS multicenter solution with J4(~x) > 0:

ds2
4 = −J−1/2

4 (~x)(dt+ ~ωd~x)2 + J
1/2
4 (~x)d~x2 (4.13)

where
J4(~x) ≡ J4 ◦ H(~x) ∇× ~ω = 〈H,∇H〉. (4.14)

As before, we define J4 ◦ H(~x) by replacing the set of charges in eqs. (4.2) by the harmonic
functions in eq. (4.11). The integrability condition for the solution is

〈H,△H〉 = 0 ,
n

∑

t=1

〈Γs,Γt〉
|~xs − ~xt|

+ 〈Γs,h〉 = 0 (4.15)

For the asymptotically flat geometry one has to require that J4(h) = 1. The values of the vector
fields (written as constrained complex matrices again!), in spherical coordinates (rs, θs, φs)
around each center ~xs are:

Aab =
∂

∂Hab

(

ln J4(H)
)

(dt+ ω) −
∑

s

cos θs dφs ⊗ Γab
s (4.16)

The 54 scalars of magic octonionic model represent the coset space
E7(−25)

E6×SO(2)
. We give their

solution in terms of the holomorphic coordinates with the special complex conjugation explained
in subsection (3.3):

Xab

X0
(~x) =

Hab + 2i
∂
√

J4(H)

∂H ab

H0 + i
∂
√

J4(H)

∂H0

. (4.17)

If we want to write things in terms a purely real decomposition of H, Hab = Hab
1 + iHab

2 , Hab =
Hab

1 − iHab
2 with H1 = H∗

1 = Ω̃H1Ω̃
T and H2 = H∗

2 = −Ω̃H2Ω̃
T we can split the equation above

into two parts involving only real harmonic functions and two separate holomorphic functions
t1 = Ω̃t1Ω̃

T and t2 = −Ω̃t2Ω̃2:

tΛΣ
1 =

XΛΣ
1

X0
→

HΛΣ
1 + i

∂
√

J4(H)

∂H1 ΛΣ

H0 + i
∂
√

J4(H)

∂H0

, tΛΣ
2 =

XΛΣ
2

X0
→

HΛΣ
2 + i

∂
√

J4(H)

∂HΛΣ

H0 + i
∂
√

J4(H)

∂H0

(4.18)

This completes the multicenter composite solution of the magic octonionic supergravity.

Manifest SO(1, 9)

20



By uplifting the magic octonionic supergravity to d = 6 and breaking E6(−26) → SO(1, 9)×
SO(1, 1) we can present the entropy formula using only real unconstrained charges. The set
of 27 real d = 5 coordinates includes a singlet of SO(1, 9) z, a 10-component vector br, and a
chiral Majorana-Weyl 16-component spinor ψα. The quartic invariant of E7(−25) in this basis
can be presented as a function of real 56 charges (p0, pI ; q0, qI) where

pI = (pz, pr, pα) qI = (qz, qr, qα) (4.19)

Here pα are 16L Majorana-Weyl spinors of SO(1, 9) and qα are 16R Majorana-Weyl spinors of
SO(1, 9).

J4(p
0, pI , q0, qI) = −(p · q)2 + 4

(

q0I3(p) − p0I3(q) + {I3(q), I3(p)}
)

. (4.20)

where the cubic invariants of the E6(−26) in this basis are given by

I3(p
I) =

1

2

(

pz ηrs p
r ps + (γr)αβ p

r pα pβ
)

I3(qI) =
1

2

(

qz η
rs qr qs + (γr)αβ qr qα qβ

)

(4.21)

and the scalar product of charges and the Poisson bracket of cubic invariants are defined as
follows

p · q ≡ p0q0 + pzqz + prqr + pαqα , {I3(q), I3(p)} ≡ ∂I3(q)

∂qI

∂I3(p)

∂pI
(4.22)

Here ηrs is the Lorentzian metric for the space SO(1, 9) and γ are the chiral γ-matrices.

The relation between the entropy of the magic exceptional octonionic N = 2 and N = 8
supergravity in this basis is simple. The metric ηrs for N = 8 is that of SO(5, 5) instead of
SO(1, 9) and the γ-matrices in the second term of cubic invariants are the one for SO(5, 5)
instead of SO(1, 9).

Since the entropy of exceptional magic N = 2 supergravity in eqs. (4.20)-(4.22) in d = 6
basis is given in terms of the real 56 charges we may immediately use it for the standard from
of the composite multicenter black hole solutions using equations from the section 2.

The choice of the most appropriate basis for the solutions, the one with manifest E6(−26) or
with manifest SO(1.9) may depend on the problem.

5 N = 8 BPS composites

5.1 Solutions via truncation to quaternionic magic N = 2

N = 8 supergravity with its
E7(7)

SU(8)
coset space can be consistently truncated to N = 2 quater-

nionic magic supergravity with a SO∗(12)
U(6)

coset space [2]. Hence 1/2 BPS multi-center solutions

of quaternionic magic supergravity are simultaneously 1/8 BPS multi-center solutions of N = 8
d = 4 supergravity. This fact has the useful consequence that to generate multi-center solutions
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of N = 8 we can use magic N = 2 and the procedure summarized in the section 2 to extend
the black hole attractor equations to stabilization equations in terms of harmonic functions.

Our first step is to identify the proper set of 32 charges which transforms as a real spinor
representation of the SO∗(12) duality group and are truncated from the 56-dimensional fun-
damental representation of the E7(7) duality group of the N = 8 model. Note that E7(7)

decomposes into SU(2) × SO∗(12) and therefore we can use the following split

E7(7) → SU(2) × SO∗(12), 56 → (2, 12) + (1, 32) (5.1)

Thus we keep all 32 charges of SO∗(12) and take as vanishing the remaining 24 charges of E7(7).
For this quaternionic magic model we can use the formulas in sec. 3 to write our expressions
with the G5 = SU∗(6) duality manifest or with the G6 = SO(1, 5) ∼ SU∗(4) manifest. In both
cases we naturally work with complex coordinates in d = 5 satisfying a reality constraint. We
will quickly recap here the solution with manifest G5 = SO∗(12) duality, and then discuss some
interesting features of the solution obtained from the truncated N = 8 structure.

One 32-dimensional set of charges of SO∗(12) is given by

Γ = (p0, pΛΣ; q0, qΛΣ) , Λ,Σ = 1, . . . 6. (5.2)

where the 15 pΛΣ’s satisfy the constraint p = ΩpΩT and similarly for the electric charges
qΛΣ. These charges transform as an anti-symmetric plus singlet of the compact subgroup
H5 = Usp(6). As in the octonionic case, we can split our charges as pΛΣ = pΛΣ

1 + ipΛΣ
2 and

qΛΣ = q1 ΛΣ − iq 2ΛΣ. The cubic invariants are

I3(p) = +Pf p, I3(q) = −Pf q, (5.3)

and the scalar product of charges and the Poisson bracket of cubic invariants are defined as
follows

p · q ≡ p0q0 +
1

2
pΛΣqΛΣ = p0q0 +

1

2
pΛΣ

1 q1ΛΣ +
1

2
pΛΣ

2 q2ΛΣ , (5.4)

{I3(q), I3(p)} ≡ 2
∂I3(q)

∂qΛΣ

∂I3(p)

∂pΛΣ
=

1

2

∂I3(q)

∂q1 ΛΣ

∂I3(p)

∂pΛΣ
1

+
1

2

∂I3(q)

∂q2 ΛΣ

∂I3(p)

∂pΛΣ
2

. (5.5)

allowing us to define J4(p
0, q0, p

ΛΣ, qΛΣ) (if we map p0 and q0 to Z78 and Z78 in [33] we get a
matching expression for J4).

The quaternionic multi-center solution starts with (1+n) of these spinor representations of
SO∗(12). Here n is the number of centers of our multicenter solution

h ≡ (h0, hΛΣ; h0, hΛΣ) , Γs ≡ (p0, pΛΣ; q0, qΛΣ)s s = 1, . . . , n. (5.6)

The first set h defines the value of the harmonic spinor at infinity. The other n spinors are the
quantized electric and magnetic charges at each center. We can now introduce a constrained
complex harmonic function:

H(~x) = (H0, HΛΣ;H0, HΛΣ) = h +

n
∑

s=1

Γs

|~x− ~xs|
, (5.7)
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which gives the stationary metric for the BPS multicenter solution as

ds2
4 = −J−1/2

4 (~x)(dt+ ~ωd~x)2 + J
1/2
4 (~x)d~x2. (5.8)

The standard definitions still apply:

J4(~x) ≡ J4 ◦ H(~x), J4(h) = 1, ∇× ~ω = 〈H,∇H〉, (5.9)

as well as the usual integrability condition:

n
∑

t=1

〈Γs,Γt〉
|~xs − ~xt|

+ 〈Γs,h〉 = 0. (5.10)

The vector fields are combined into a constrained complex matrix defined just as in eq.(4.16).

The 30 scalars of magic quaternionic model represent the coset space SO∗(12)
U(6)

. We will give the

solution for them using our modified attractor equations (3.49)

XΛΣ

X0
(~x) =

HΛΣ + 2i
∂
√

J4(H)

∂HΛΣ

p0 + i
∂
√

J4(H)

∂H0

, (5.11)

also written as

XΛΣ
1 + iXΛΣ

2

X0
(~x) =

HΛΣ
1 + i

∂
√

J4(H)

∂H1 ΛΣ

p0 + i
∂
√

J4(H)

∂H0

+ i
HΛΣ

2 + i
∂
√

J4(H)

∂H2 ΛΣ

p0 + i
∂
√

J4(H)

∂H0

. (5.12)

At infinity the scalars take values defined by the harmonic function at infinity, when H = h.
Near each center at ~x = ~xs the attractor values of the scalars are defined as follows

XΛΣ

X0
(~xs) =

HΛΣ + 2i
∂
√

J4(H)

∂H1 ΛΣ

p0 + i
∂
√

J4(H)

∂H0

|H⇒ Γs

|~x−~xs|
. (5.13)

Note that if we would keep only canonical 3+3 of our 15 p and q we would reproduce the Caley’s
Hyperdeterminant of the 2x2x2 matrix, which will also give us the STU multicenter black hole
solutions.

5.2 On the uniqueness of the N = 8 multi-center BPS solution

We want to argue that the most general 1/8 BPS multicenter solution is given by the 1/2
BPS solution of the quaternionic magic N=2 supergravity, modulo and overall SU(8) rotation.
Indeed, using an SU(8) rotation one can diagonalize the N = 8 central charge matrix so that
it has only the non-vanishing complex eigenvalues z1 = Z12, z2 = Z34, z3 = Z56, z4 = Z78. As
argued in [9] this leads to a condition at each attractor point that

z1z2 + z∗3z∗4 = 0

z1z3 + z∗2z∗4 = 0

z2z3 + z∗1z∗4 = 0 (5.14)
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The 1/8 BPS condition for the one center solution requires that

z1 = ρBPSe
iϕ1 6= 0 z2 = z3 = z4 = 0 JBPS

4 = ρ4
BPS > 0 MBPS = |z1| (5.15)

The largest central charge z1 belongs naturally to a unique N = 2 subalgebra. This defines a
decomposition of the N = 8 supergravity. In the compact basis SU(2) × SU(6) under SU(8)
of E7(7)

28 of SU(8) → 28 = (1, 15) + (2, 6) + (1, 1) of SU(2) × SU(6) (5.16)

The 1 + 15 are antisymmetric and make a total of 32 (16 electric and 16 magnetic). This is
precisely like 28 + 28 combine in 56 of E7(7). However, now the 32 combine into a single chiral
spinor of SO∗(12), which is the U duality group of the truncated N = 2 theory!

In general finding 1/8 BPS solutions of N = 8 supergravity, 1/6 BPS solutions of N = 6
supergravity, 1/4 BPS solutions to N = 4 supergravity always involves a consistent truncation
to the appropriate N = 2 supergravity. For the case of N = 8, this gives the quaternionic
magic N = 2 supergravity.

Multi-center case

It is plausible that for the solution to be BPS each center must be 1/2 BPS with respect
to the same N = 2 algebra. In such a case, we may truncate our theory to a single copy of
the magic supergravity with vector multiplets only and ignore all the hypermultiplets, as we
did in the previous section, and we may claim that there are no other solutions. The question
which one still may like to ask here is the following. Is it necessary that near each center the
BPS solution can only belong to the same N = 2 supergravity? Could it be that more general
solution has different N = 2 parts of N = 8 as unbroken supersymmetry? For example, at
some center instead of eq. (5.15) we may have

z1 = z3 = z4 = 0 z2 = ρBPSe
iϕ1 6= 0 JBPS

4 = ρ4
BPS > 0 MBPS = |z2| (5.17)

If this is possible, one would not be able to provide the most general 1/8 BPS solution of
N = 8 by truncating it to quaternionic magic N = 2. However, we find this scenario extremely
unlikely.

One way to resolve this issue and get a definite statement on the uniqueness/ non-uniqueness
of our solution is by using the study of the Killing spinors of 1/8 BPS multicenter solutions in
N = 8 supergravity. These Killing spinors have not been constructed so far. We find it plausible
to conjecture that such Killing spinors have the structure seen in many other examples, namely:
the Killing spinor depends on ~x via a common factor eU(~x)/2, where the gtt = e2U(~x), and a phase.
The Killing spinor also satisfies some constraint imposed globally. Thus the projector usually
acts on a part of the spinor which is ~x-independent. The reason is that the supersymmetry
transformations [1] are given by,

δΨµA = DµǫA + ZAB µνγ
νǫB , (5.18)

δχABC = γµPµABCD ǫ
D + Z[AB µνσ

µνǫC] . (5.19)

They consist of two parts, the first is the gravitino in eq. (5.18) while the second is for the
spin 1/2 fields in eq. (5.19). We deal only with the global part of the spinor for the spin 1/2
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equation while for the gravitino we have a spin connection which tells us how the Killing spinor
acquires an ~x-dependent factor, which depends on some harmonic functions. The projector,
however, is the same for all centers if the Killing spinor in N = 8 has the same features as the
one in truncated models. If our expectation about the structure of Killing spinors are justified,
we will be able to confirm definitely the uniqueness of our solution for 1/8 BPS multicenter
black holes in N = 8 supergravity.

5.3 Alternate N = 8 structure and the black hole mass formula

In the material above, we have written the gauge fields, prepotential and complex scalars using
a symplectic section nicely adapted to an invariance under the five-dimensional U-duality group
G5. We will not give any description of the gauge fields or the coset which is explicitly invariant
under G4, but is useful to point out such a description is easily available for understanding the
metric. This description uses some of the inherent structures of the N = 8 U-duality group,
and by truncation applies to the quaternionic magic N = 2. It is likely that the modification
of a reality structure yields a similar structure for the octonionic magic N = 2, but we will not
explore this here.

The N = 8 U-duality group in four dimensions, G4 = E7(7) has a covariant cubic map [32]
from the the fundamental representation back into itself and an invariant symplectic form. Each
56 (X ij, Xij), is spanned by the two antisymmetric real tensors X ij and Xij and the action of
E7(7) on them is realized in a standard way [1], [32].

The quadratic invariant of E7(7), an invariant symplectic form, can be constructed from any
two distinct fundamentals as follows.

〈X, Y 〉 = −〈Y,X〉 := X ijYij −XijY
ij (5.20)

Note that such quadratic invariant vanishes for a single fundamental. A triple product of any

three 56
(

(X, Y, Z)ij, (X, Y, Z)ij

)

, gives a trilinear map 56 × 56 × 56 → 56.

A unique quartic invariant can be constructed from a single fundamental in the following
way. One can build out of X a triple which is different from the original 56. Afterwards one
can use the quadratic invariant for 2 distinct fundamentals: a fundamental and its triple: this
gives the standard form of a quartic invariant via the following symplectic invariant

J4(X) =
1

48
〈(X,X,X), X〉 (5.21)

The triple product obeys some relations

(X, Y, Z) = (Y,X, Z) + 2〈X, Y 〉Z
(X, Y, Z) = (Z, Y,X) − 2〈X,Z〉Y (5.22)

A symplectic product of a fundamental and a triple satisfies the following relation

〈(X, Y, Z),W 〉 = 〈(X,W,Z), Y 〉 − 2〈X,Z〉〈Y,W 〉 (5.23)
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The operations above have their origin in the Jordan algebra structure, JOs

3 behind the magic
square construction of E7, and so carry over nicely to the duality group based on the restriction
of this algebra to JQ

3 , the quaternionic U-duality group G4 = SO∗(12). This allows us to write
for all magic supergravities:

J4(~x) =
1

48
<

(

H(~x),H(~x),H(~x)
)

,H(~x) > . (5.24)

Here the corresponding harmonic function H(~x) is in the fundamental representation of E7(−25)

for octonionic magic and in the appropriate representation for all its truncations. In particular,
in the quaternionic case this expression provides us with the mass of the N=8 supergravity
solution. We can efficiently extract this mass for our solution using the form for J4 above, J4’s
fall-off at infinity, the properties of the cubic map and the fact that < h,Γ >= 0. The ADM
mass is defined via the asymptotic behavior of the time-time component of the metric, as

gtt = J
−1/2
4 = 1 − 2MADM

|~x| + ... (5.25)

and we take into account that in our case

< (h,h,h),Γ >=< (Γ,h,h),h >=< (h,Γ,h),h >=< (h,h,Γ),h > . (5.26)

This gives us a magic black hole mass formula:

MADM =
1

48
< (h,h,h),Γ > . (5.27)

6 BPS and non-BPS, N = 2 versus N = 5, 6, 8

6.1 N = 2 attractors, general case

In [9] simple algebraic attractor equations were derived for regular black holes of N = 8 super-
gravity. These equations have 2 solutions: one BPS with 1/8 of unbroken supersymmetry and
one non-BPS solution with all supersymmetries broken. In the case of the STU truncation the
N = 8 attractor equations correspond to the attractor equations of the N = 2 model.

Here we would like to analyse the generic attractor equations for N=2 theory and apply
this analysis to BPS and non-BPS attractors of magic supergravities. For this purpose we start
with a special geometry identity:

pΣ + i
∂I1
∂qΣ

= 2iZ̄LΣ + 2iGjj̄DjZDj̄L̄
Σ

qΣ − i
∂I1
∂pΣ

= 2iZ̄MΣ + 2iGjj̄DjZDj̄M̄Σ (6.1)

The identity follows from the definition

DjZ = (∂j +
1

2
K,j)Z (6.2)
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where the central charge Z = LΛqΛ−MΛp
Λ. One contracts eq. (6.2) with Dj̄L̄

ΣGj̄i and proceed
as in eqs. (40)-(45) in [6] where the BPS attractor equations were derived assuming DZ = 0.
A simplified form of these equations, which uses the derivatives of the I1(p, q)-invariant, was
explained in Sec. 3.2 in [36]. Equations (6.1) supplemented by a vanishing of the first derivative
of the potential, 2Z̄DiZ + icijkG

ij̄Gkk̄Dj̄Z̄Dk̄Z̄ = 0 [8], have 3 types of solutions.

1. 1/2 BPS, well known

pΣ + i
∂I1
∂qΣ

= 2iZ̄LΣ , qΣ − i
∂I1
∂pΣ

= 2iZ̄MΣ , (6.3)

2. Non-BPS, Z = 0, less known

pΣ + i
∂I1
∂qΣ

= 2iGjj̄DjZDj̄L̄
Σ qΣ − i

∂I1
∂pΣ

= 2iGjj̄DjZDj̄M̄Σ (6.4)

Iff 2iGjj̄DjZDj̄L̄
Σ = 2i

∑4
I=2 Z̄IDĪL̄

Σ we find a solution of the following type

Z2 6= 0 Z3 = 0 Z4 = 0 (6.5)

and we can solve the attractor equations as follows

pΛ + i ∂I1
∂qΛ

p0 + i∂I1
∂q0

=
D2̂L̄

Λ

D2̂L̄
0
,

qΛ − i ∂I1
∂pΛ

q0 − i ∂I1
∂p0

=
D2̂M̄Λ

D2̂M̄0

(6.6)

3. Non-BPS, Z 6= 0. This case is particularly tractable for the models with the coset spaces
G4

H4
of rank 3. All magic models have rank 3. The matrix of central charge derivatives DZ

has an H4 symmetry:

• JO ⇒ H4 = E6 × U(1)

• JQ ⇒ H4 = SU(6) × U(1)

• JC ⇒ H4 = SU(3) × SU(3) × U(1)

• JR ⇒ H4 = SU(3) × U(1)

With an H4 rotation we can skew-diagonalize the matrix DZ so that it has 3 eigenvalues,
D̄IZ̄ ≡ ZI , I = 2, 3, 4. Together with N = 2 central charge Z = −iZ1 we have 4 charges,

Z1 = iZ , ZI = D̄ÎZ̄ (6.7)

The extremality condition is given by

2Z̄DÎZ + idÎĴK̂Z̄ ˆ̄J
Z̄ ˆ̄K

δĴ ˆ̄JδK̂ ˆ̄K = 0 (6.8)

and it becomes for magic models in normal frame

Z1Z2 + Z∗3Z∗4 = 0

Z1Z3 + Z∗2Z∗4 = 0

Z2Z3 + Z∗1Z∗4 = 0 (6.9)
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exactly as in N = 8 case [9]. The solution is as in [9]

Z1 = ρei(π−3φ) , ZI = ρeiφ, Z1Z2Z3Z4 = ρ4eiπ = −ρ4 (6.10)

Here we have satisfied the attractor equations: ZIZJ +Z∗
KZ

∗
M = 0, I 6= J 6= K 6= M .

We may use this in an identity (6.1) and we find in case that φ = 0

pΣ + i
∂I1
∂qΣ

= 2ρ(LΣ + i
∑

ˆ̄I

D̄ ˆ̄I
L̄Σ) (6.11)

qΣ − i
∂I1
∂pΣ

= 2ρ(MΣ + i
∑

ˆ̄I

D̄ ˆ̄I
M̄Σ) (6.12)

and

pΣ + i ∂I1
∂qΣ

p0 + i∂I1
∂q0

=
LΣ + i

∑

ˆ̄I
D̄ ˆ̄I
L̄Σ

L0 + i
∑

ˆ̄I
D̄ ˆ̄I
L̄0

,
qΣ − i ∂I1

∂pΣ

q0 − i ∂I1
∂p0

=
MΣ + i

∑

ˆ̄I
D̄ ˆ̄I
M̄Σ

M0 + i
∑

ˆ̄I
D̄ ˆ̄I
M̄0

(6.13)

Equations (6.13) define the values of moduli fields in terms of charges in the non-BPS case. We
have verified [37] that these equations provide a non-BPS attractor solution of the STU model
in example studied in [11].

6.2 N = 2 versus N = 5, 6, 8 and BPS versus ,non-BPS

The extended supergravities N = 5, 6 as well as N = 8 have no matter multiplets, only the
gravitational one. Therefore they are very restricted. BPS black holes in these theories have
been studied before in [38]. Since now we understand certain features on N = 8 BPS and
non-BPS black holes and their relation to N = 2 BPS and non-BPS ones, as shown in [9], we
may extend this relations also to include N = 6 and N = 5 theories.

The N = 8 supergravity has a consistent truncation both to N = 6 and N = 2 supergravity
theories, depending on whether one keeps six or two of the eight gravitinos. In both cases one
ends up with JQ based on the SO∗(12)

U(6)
manifold. This manifold, because it is consistent with

N=2, is indeed a special Kähler symmetric space. The charge vector is in the 32 of SO∗(12)
(chiral spinor). From an N = 2 point of view

32 = 15 + 15 + 1 + 1 (6.14)

where 15 are in the matter multiplet and 1 is the graviphoton.

In N = 6 supergravity the central charge is ZAB = −ZBA with A,B = 1, ..., 6 and there is
also a singlet charge Z [38]. The black hole potential is

VBH =
1

2
ZABZ̄

AB + ZZ̄ , (6.15)
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The 1/6 BPS solution of N=6 theory was identified in [38]: it has Z = 0 and a skew-diagonal
ZAB with Z12 6= 0 and Z34 = Z56 = 0. From the N = 2 point of view such solution is a non-BPS
solution (with vanishing central charge). On the other hand, the 1/2 BPS solution of N = 2
theory with Z 6= 0 and ZAB = 0 corresponds to a non-BPS solution of the N=6 theory (with
vanishing N = 6 central charge).

Let us now comment on N = 5 theory and relation of 1/5 BPS solution to 1/2 BPS of
the relevant N = 2 theory. The N = 5 special Kähler geometry theory is based on the
SU(5,1)

U(5)
symmetric space with 5 complex scalars. The central charge ZAB has a non-vanishing

component Z12 6= 0 whereas Z34 = 0 is vanishing: this is a 1/5 BPS solution. Despite the fact
that the N = 5 model has the same sigma model as the corresponding N = 2 theory, the vector
part of these models is different: N = 2 has six vectors and N = 5 has ten vectors. Therefore,
as different from N = 6 case, the 1/5 BPS solutions of N = 5 are different from the 1/2 of

N = 2 supergravity based on SU(5,1)
U(5)

symmetric space.

7 Discussion

We have given a complete description of the cubic and quartic invariants for magic supergravi-
ties. Using these we were able to write down multi-center 1/2 BPS solutions for the exceptional
octonionic magic supergravity with a 56-component charge vector at each center. This model
has E7(−25) duality symmetry, which is slightly different from the duality symmetry of N = 8
theory, E7(7). We have also demonstrated how multi-center quaternionic magic solutions with
32-component charge at each center can be used to describe a broad (possibly complete) array
of N = 8 1/8 BPS multi-center solution.

In [28], it was shown that any single center 1/8 BPS solution of N = 8 could be rotated using
an E7(7) duality transformation to a form involving just a single center solution the N=2 STU
truncation of N = 8. For the non-BPS attractors of magic supergravities we have made used
of this truncation to the STU model. Using the solutions of the non-BPS attractors for N = 8
supergravity presented in [9] we have found the general solutions of the non-BPS attractors for
the N = 2 STU model.

The duality rotation which takes a single center solution to an STU form is not powerful
enough for a generic 1/8 BPS solution with multiple centers: such a rotation is clearly not
enough to rotate every center to STU form. For solutions generated via quaternionic magic
supergravity, it would be interesting to work out which is the minimal N = 2 truncation that
admits generic cases with two, three, four etc... centers, just as STU supergravity is minimal
truncation of N = 8 which describes all single center solutions.

Clearly, N = 2 truncations play a major role in understanding 1/8 BPS states of N = 8
supergravity. Apart from clarifying if N = 2 truncation is the only way to achieve 1/8 BPS
configurations, a clearer look at these truncations in context of black holes might be productive.
Different truncations allow a varying number of hypermultiplet scalars (see e.g. [39]) from the
N = 8 coset to survive. The hyper scalars vevs typically play a spectator role, since they will
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not vary in BPS black hole solutions, but for an observer near infinity they may reveal some
information about just which N = 2 truncation is in operation for a given multi-center solution.

For future reference, we summarize the hyper-multiplet scalars which the survive from the
N = 8 coset in the truncation to the various magic supergravities (for details see [39]). In
quaternionic magic, we have E7(7) → SO∗(12) × SU(2) and no hypers survive. In the complex
case, E7(7) → SU(3, 3) × SU(2, 1) and we get four hyper scalars parameterizing the coset
SU(2, 1)/SU(2)×U(1); the real case corresponds to E7(7) → Sp(6,R)×G2(2) and has eight hyper
scalars, G2(2)/SO(4). The STU truncations has hyper scalars in SO(4, 4)/SO(4) × SO(4, 4)
(see [28]). As we restrict the vector moduli space, the hyper moduli space increases in multiples
of four (it is quaternionic).

Finally, given the relationship between extremal non-BPS and BPS solutions of N = 2
magic quaternionic supergravity and those of N = 6, it would be interesting to understand
just how many such links exists between various extremal solutions of different supergravities,
perhaps along lines related to [36].

Acknowledgments

It is a pleasure to thank R. D’Auria, V. Balasubramanian, O. Ganor, M. Günaydin, T. Levi,
T. Ort́ın, B. Pioline, A. Sen, A. Tomasiello and M. Trigiante for useful conversations. We are
grateful to participants of 2006 Frascati Winter school on Attractor mechanism for the interest
to this work. The work of S.F. has been supported in part by the European Community Human
Potential Program under contract MRTN-CT-2004-005104 “Constituents, fundamental forces
and symmetries of the universe”, in association with INFN Frascati National Laboratories
and by D.O.E. grant DE-FG03-91ER40662, Task C. The work of EG was supported by the US
Department of Energy under contracts DE-AC03-76SF00098 and DE-FG03-91ER-40676 and by
the National Science Foundation under grant PHY-00-98840. The work of R.K. was supported
by NSF grant PHY-0244728.

Appendix A: d = 6 duality and quaternionic magic model

This model even if we break the manifest G5 duality down to G6 duality still does not give us
a very special real geometry in d = 5 and the relevant complexified special geometry in d = 4.
The reason is that the spinors of SO(1, 5) ∼ SU∗(4) as opposite to other magic models with
SO(1, 2), SO(1, 3), SO(1, 9) do not have real representations. Thus we have to use complex
coordinates constrained by reality conditions.

Both the vectors and the spinors are complex and satisfy the reality condition. For vectors
of SU∗(4) we use an antisymmetric matrix VAB = −VBA and V ∗ = −ΩV Ω where Ω = −Ωt,
Ω2 = −1. Thus V1 = ReV = −ΩReVΩ and V2 = ImV = ΩImV Ω. We also introduce
Ṽ AB ≡ 1

2
ǫABCDVCD. Thus the first term in the cubic invariant, z[(b0)2 − ∑i=5

i=1(b
i)2] can be

rewritten as zVABṼ
AB = z(V1 ABṼ

AB
1 −V2 ABṼ

AB
2 ) in terms of real entries only. For spinors ΨAi

of SU∗(4)×SU(2) with A = 1, . . . , 4, i = 1, 2 there is a reality condition Ψ∗
Ai = ΩABǫijΨBj and
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ǫ2 = −1. We also split these spinors into real and imaginary parts which we call Ψ1 and Ψ2

respectively, Ψ1 = ΩǫΨ1 and Ψ2 = −ΩǫΨ2. The second term of the cubic invariant can now be
presented as a function of only real coordinates, [V1 AB(ΨAi

1 ΨBj
1 − ΨAi

2 ΨBj
2 ) − V2 AB(ΨAi

1 ΨBj
2 +

ΨBj
1 ΨAi

2 )]ǫij .

Now we need the cubic invariants in terms of charges. We take

pz, pr, pα ⇒ pz, pAB, p
Ai , qz, qr, qα ⇒ qz, q

AB, qAi , pAB = −pBA qAB = −qBA (7.1)

and p · q = pzqz + pABq
AB + pAiqAi p̃AB = 1

2
ǫABCDpCD , q̃AB = 1

2
ǫABCDq

CD

The cubic invariants are

I3(p) =
1

2

(

pzpAB p̃
AB + pABp

AipBjǫij

)

(7.2)

I3(p) =
1

2

(

qzq
AB q̃AB + qABqAiqBjǫ

ij
)

(7.3)

where the reality conditions are

p∗ = −ΩpΩ , p∗Ai = (Ωǫp)Ai (7.4)

As the consequence of the reality conditions (7.4) the cubic invariants are real

I∗3 (p) = I3(p
∗) = I3(p) (7.5)

and the same for electric charges. We may split the charges into real and imaginary parts

pAB = p1 AB + ip2 AB pAi
1 + ipAi

2 (7.6)

and find for I3(p)

1

2

(

pz(p1 AB p̃
AB
1 − p2 AB p̃

AB
2 ) + [p1 AB(pAi

1 p
Bj
1 − pAi

2 p
Bj
2 ) − p2 AB(pAi

1 p
Bj
2 + pAi

2 p
Bj
1 )]ǫij

)

(7.7)

and analogous for I3(q).
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