2,907 research outputs found

    The Effectiveness of State and Local Regulation of Handguns: A Statistical Analysis

    Get PDF
    One aspect of the continuing debate over weapons control, apart from Constitutional issues, is whether legislation is inherently capable of reducing crime and deaths by shooting. The opponents of increased control, tacitly admitting that empirical evidence is one means for measuring the effect of weapons regulation, have contended that [e]xpert opinion and compelling evidence seem to indicate that the amount or kind of crime in a community is not substantially affected by the relative ease with which a person can obtain a firearm. National Rifle Association of America, The Gun Law Problem 10. In the following study the authors employ data analysis techniques to examine the efficacy of state and municipal controls on handguns. They conclude that many lives would be saved if all states increased their level of control to that of New Jersey, the state having the most stringent gun control laws

    The Effectiveness of State and Local Regulation of Handguns: A Statistical Analysis

    Get PDF
    One aspect of the continuing debate over weapons control, apart from Constitutional issues, is whether legislation is inherently capable of reducing crime and deaths by shooting. The opponents of increased control, tacitly admitting that empirical evidence is one means for measuring the effect of weapons regulation, have contended that [e]xpert opinion and compelling evidence seem to indicate that the amount or kind of crime in a community is not substantially affected by the relative ease with which a person can obtain a firearm. National Rifle Association of America, The Gun Law Problem 10. In the following study the authors employ data analysis techniques to examine the efficacy of state and municipal controls on handguns. They conclude that many lives would be saved if all states increased their level of control to that of New Jersey, the state having the most stringent gun control laws

    CosmosDSR -- a methodology for automated detection and tracking of orbital debris using the Unscented Kalman Filter

    Full text link
    The Kessler syndrome refers to the escalating space debris from frequent space activities, threatening future space exploration. Addressing this issue is vital. Several AI models, including Convolutional Neural Networks, Kernel Principal Component Analysis, and Model-Agnostic Meta- Learning have been assessed with various data types. Earlier studies highlighted the combination of the YOLO object detector and a linear Kalman filter (LKF) for object detection and tracking. Advancing this, the current paper introduces a novel methodology for the Comprehensive Orbital Surveillance and Monitoring Of Space by Detecting Satellite Residuals (CosmosDSR) by combining YOLOv3 with an Unscented Kalman Filter (UKF) for tracking satellites in sequential images. Using the Spacecraft Recognition Leveraging Knowledge of Space Environment (SPARK) dataset for training and testing, the YOLOv3 precisely detected and classified all satellite categories (Mean Average Precision=97.18%, F1=0.95) with few errors (TP=4163, FP=209, FN=237). Both CosmosDSR and an implemented LKF used for comparison tracked satellites accurately for a mean squared error (MSE) and root mean squared error (RME) of MSE=2.83/RMSE=1.66 for UKF and MSE=2.84/RMSE=1.66 for LKF. The current study is limited to images generated in a space simulation environment, but the CosmosDSR methodology shows great potential in detecting and tracking satellites, paving the way for solutions to the Kessler syndrome.Comment: 7 figures, 15 pages inc ref

    AXAF user interfaces for heterogeneous analysis environments

    Get PDF
    The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future

    Efficacy of chloroquine, sulphadoxine-pyrimethamine and amodiaquine for treatment of uncomplicated Plasmodium falciparum malaria in Kajo Keji county, Sudan.

    Get PDF
    To provide advice on the rational use of antimalarial drugs, Médecins Sans Frontières conducted a randomized, an open label efficacy study in Kajo Keji, an area of high transmission of malaria in southern Sudan. The efficacy of chloroquine (CQ), sulphadoxine-pyrimethamine (SP) and amodiaquine (AQ) were measured in a 28-day in vivo study, with results corrected by PCR genotyping. Of 2010 children screened, 115 children aged 6-59 months with uncomplicated Plasmodium falciparum malaria were randomized into each group to receive a supervised course of treatment. Of these, 114, 103 and 111 were analysed in the CQ, SP and AQ groups, respectively. The overall parasitological failure rates at day 28 were 93.9% [95% confidence interval (CI) 87.3-97.3] for CQ, 69.9% (95% CI 60.0-78.3) for SP, and 25.2% (95% CI 17.7-34.5) for AQ. These results provide important missing data on antimalarial drug efficacy in southern Sudan. They indicate that none of the drugs could be used in monotherapy and suggest that even in combination with artemisinin, cure rates might not be efficacious enough. We recommend a combination of artemether and lumefantrine as first-line treatment for uncomplicated P. falciparum malaria cases in Kajo Keji county

    Temperature dependence of the energy dissipation in dynamic force microscopy

    Full text link
    The dissipation of energy in dynamic force microscopy is usually described in terms of an adhesion hysteresis mechanism. This mechanism should become less efficient with increasing temperature. To verify this prediction we have measured topography and dissipation data with dynamic force microscopy in the temperature range from 100 K up to 300 K. We used 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) grown on KBr(001), both materials exhibiting a strong dissipation signal at large frequency shifts. At room temperature, the energy dissipated into the sample (or tip) is 1.9 eV/cycle for PTCDA and 2.7 eV/cycle for KBr, respectively, and is in good agreement with an adhesion hysteresis mechanism. The energy dissipation over the PTCDA surface decreases with increasing temperature yielding a negative temperature coefficient. For the KBr substrate, we find the opposite behaviour: an increase of dissipated energy with increasing temperature. While the negative temperature coefficient in case of PTCDA agrees rather well with the adhesion hysteresis model, the positive slope found for KBr points to a hitherto unknown dissipation mechanism

    The Experience of Volatility in Low- and Moderate-Income Households: Results From a National Survey

    Get PDF
    This is the first in a series of briefs that the Center for Social Development has produced in partnership with the Aspen Institute’s Expanding Prosperity Impact Collaborative (EPIC) and the Intuit Tax and Financial Center. It highlights new data on the prevalence of income and expense volatility in low- and moderate-income households
    • …
    corecore