The dissipation of energy in dynamic force microscopy is usually described in
terms of an adhesion hysteresis mechanism. This mechanism should become less
efficient with increasing temperature. To verify this prediction we have
measured topography and dissipation data with dynamic force microscopy in the
temperature range from 100 K up to 300 K. We used
3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) grown on KBr(001), both
materials exhibiting a strong dissipation signal at large frequency shifts. At
room temperature, the energy dissipated into the sample (or tip) is 1.9
eV/cycle for PTCDA and 2.7 eV/cycle for KBr, respectively, and is in good
agreement with an adhesion hysteresis mechanism. The energy dissipation over
the PTCDA surface decreases with increasing temperature yielding a negative
temperature coefficient. For the KBr substrate, we find the opposite behaviour:
an increase of dissipated energy with increasing temperature. While the
negative temperature coefficient in case of PTCDA agrees rather well with the
adhesion hysteresis model, the positive slope found for KBr points to a
hitherto unknown dissipation mechanism