1,195 research outputs found

    On the impact of high-resolution, high-frequency meteorological forcing on Denmark Strait ocean circulation

    Get PDF
    This paper quantifies and discusses the impact of high-resolution, high-frequency atmospheric forcing on the ocean circulation in the vicinity of the Denmark Strait. The approach is to force a 2 km resolution regional ocean circulation model with atmospheric states from reanalysis products that have different spatial and temporal resolutions. We use the National Center for Environmental Prediction global reanalysis data (2.5° resolution, 6-hourly output) and a specially configured regional atmospheric model (12 km resolution, hourly output). The focus is on the month-long period in winter 2007 during the Greenland Flow Distortion Experiment. Diagnostics of upper-ocean currents and mixing are sensitive to the small-scale variability in the high-resolution regional atmospheric model. The hydrographic state of the ocean model is insensitive over the month-long experiments, however. Both sea ice and the fluxes of volume, heat, and freshwater across the east Greenland shelf break and through the Denmark Strait show a moderate response to the high-resolution atmospheric forcing. The synoptic-scale atmospheric state has a large role in controlling sea ice too, while internal ocean dynamics is the dominant factor controlling the flux diagnostics. It is the high spatial resolution, not the temporal resolution, that causes these effects, with O(10 km)-scale features being most important. The sea-level wind field is responsible, with the other atmospheric fields playing relatively minor roles

    High Energy Physics from High Performance Computing

    Full text link
    We discuss Quantum Chromodynamics calculations using the lattice regulator. The theory of the strong force is a cornerstone of the Standard Model of particle physics. We present USQCD collaboration results obtained on Argonne National Lab's Intrepid supercomputer that deepen our understanding of these fundamental theories of Nature and provide critical support to frontier particle physics experiments and phenomenology.Comment: Proceedings of invited plenary talk given at SciDAC 2009, San Diego, June 14-18, 2009, on behalf of the USQCD collaboratio

    Spatial distribution of air-sea heat fluxes over the sub-polar North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L18806, doi:10.1029/2012GL053097.On a variety of spatial and temporal scales, the energy transferred by air-sea heat and moisture fluxes plays an important role in both atmospheric and oceanic circulations. This is particularly true in the sub-polar North Atlantic Ocean, where these fluxes drive water-mass transformations that are an integral component of the Atlantic Meridional Overturning Circulation (AMOC). Here we use the ECMWF Interim Reanalysis to provide a high-resolution view of the spatial structure of the air-sea turbulent heat fluxes over the sub-polar North Atlantic Ocean. As has been previously recognized, the Labrador and Greenland Seas are areas where these fluxes are large during the winter months. Our particular focus is on the Iceland Sea region where, despite the fact that water-mass transformation occurs, the winter-time air-sea heat fluxes are smaller than anywhere else in the sub-polar domain. We attribute this minimum to a saddle point in the sea-level pressure field, that results in a reduction in mean surface wind speed, as well as colder sea surface temperatures associated with the regional ocean circulation. The magnitude of the heat fluxes in this region are modulated by the relative strength of the Icelandic and Lofoten Lows, and this leads to periods of ocean cooling and even ocean warming when, intriguingly, the sensible and latent heat fluxes are of opposite sign. This suggests that the air-sea forcing in this area has large-scale impacts for climate, and that even modest shifts in the atmospheric circulation could potentially impact the AMOC.GWKM was supported by the Natural Science and Engineering Research Council of Canada. IAR was funded in part by NCAS (the National Centre for Atmospheric Sciences) and by NERC grant NE/I005293/1. RSP was funded by grant OCE-0959381 fromthe US National Science Foundation.2013-03-2

    Aircraft-based observations of air-sea fluxes over Denmark Strait and the Irminger sea during high wind speed conditions

    Get PDF
    The impact of targeted sonde observations on the 1-3 day forecasts for northern Europe is evaluated using the Met Office four-dimensional variational data assimilation scheme and a 24 km gridlength limited-area version of the Unified Model (MetUM). The targeted observations were carried out during February and March 2007 as part of the Greenland Flow Distortion Experiment, using a research aircraft based in Iceland. Sensitive area predictions using either total energy singular vectors or an ensemble transform Kalman filter were used to predict where additional observations should be made to reduce errors in the initial conditions of forecasts for northern Europe. Targeted sonde data was assimilated operationally into the MetUM. Hindcasts show that the impact of the sondes was mixed. Only two out of the five cases showed clear forecast improvement; the maximum forecast improvement seen over the verifying region was approximately 5% of the forecast error 24 hours into the forecast. These two cases are presented in more detail: in the first the improvement propagates into the verification region with a developing polar low; and in the second the improvement is associated with an upper-level trough. The impact of cycling targeted data in the background of the forecast (including the memory of previous targeted observations) is investigated. This is shown to cause a greater forecast impact, but does not necessarily lead to a greater forecast improvement. Finally, the robustness of the results is assessed using a small ensemble of forecasts

    Potential economic impacts from improving breastfeeding rates in the UK

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.RATIONALE: Studies suggest that increased breastfeeding rates can provide substantial financial savings, but the scale of such savings in the UK is not known. OBJECTIVE: To calculate potential cost savings attributable to increases in breastfeeding rates from the National Health Service perspective. DESIGN AND SETTINGS: Cost savings focussed on where evidence of health benefit is strongest: reductions in gastrointestinal and lower respiratory tract infections, acute otitis media in infants, necrotising enterocolitis in preterm babies and breast cancer (BC) in women. Savings were estimated using a seven-step framework in which an incidence-based disease model determined the number of cases that could have been avoided if breastfeeding rates were increased. Point estimates of cost savings were subject to a deterministic sensitivity analysis. RESULTS: Treating the four acute diseases in children costs the UK at least £89 million annually. The 2009-2010 value of lifetime costs of treating maternal BC is estimated at £959 million. Supporting mothers who are exclusively breast feeding at 1 week to continue breast feeding until 4 months can be expected to reduce the incidence of three childhood infectious diseases and save at least £11 million annually. Doubling the proportion of mothers currently breast feeding for 7-18 months in their lifetime is likely to reduce the incidence of maternal BC and save at least £31 million at 2009-2010 value. CONCLUSIONS: The economic impact of low breastfeeding rates is substantial. Investing in services that support women who want to breast feed for longer is potentially cost saving

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
    • …
    corecore