362 research outputs found
Coherent control at its most fundamental: CEP-dependent electron localization in photodissoziation of a H2+ molecular ion beam target
Measurements and calculations of the absolute carrier-envelope phase (CEP)
effects in the photodissociation of the simplest molecule, H2+, with a 4.5-fs
Ti:Sapphire laser pulse at intensities up to (4 +- 2)x10^14 Watt/cm^2 are
presented. Localization of the electron with respect to the two nuclei (during
the dissociation process) is controlled via the CEP of the ultra-short laser
pulses. In contrast to previous CEP-dependent experiments with neutral
molecules, the dissociation of the molecular ions is not preceded by a
photoionization process, which strongly influences the CEP dependence.
Kinematically complete data is obtained by time- and position-resolved
coincidence detection. The phase dependence is determined by a single-shot
phase measurement correlated to the detection of the dissoziation fragments.
The experimental results show quantitative agreement with ab inito 3D-TDSE
calculations that include nuclear vibration and rotation.Comment: new version includes minore changes and adding the supp_material.pd
Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy
Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomographyââSQUIRRELSââfor free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electronâmatter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime
CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts
We study THz-emission from a plasma driven by an incommensurate-frequency
two-colour laser field. A semi-classical transient electron current model is
derived from a fully quantum-mechanical description of the emission process in
terms of sub-cycle field-ionization followed by continuum-continuum electron
transitions. For the experiment, a CEP-locked laser and a near-degenerate
optical parametric amplifier are used to produce two-colour pulses that consist
of the fundamental and its near-half frequency. By choosing two incommensurate
frequencies, the frequency of the CEP-stable THz-emission can be continuously
tuned into the mid-IR range. This measured frequency dependence of the
THz-emission is found to be consistent with the semi-classical transient
electron current model, similar to the Brunel mechanism of harmonic generation
2011-04 Effective Tax and Subsidy Rates on Human Capital in Canada
Effective tax and subsidy rates (ETRs and ESRs) on human capital investment via postsecondary education are estimated for Canada in the years 2000 and 2006. The flattening of the federal personal income tax structure in 2001 substantially reduced the tax disincentive for investment in human capital. Effective subsidy rates also declined as public spending did not keep pace with rising tuition fees. The change on the tax side was strong enough to dominate the subsidy reduction according to our main results, but disaggregation shows that this result did not hold in all cases. Results are shown for College, Master's, and PhD programs, in addition to Bachelor's degrees. They are also broken down by gender, and are shown for the 25th and 75th percentiles as well as the median. Provincial detail and 1997 results are provided in the case of Bachelor's graduates
Orbital angular momentum superposition states in transmission electron microscopy and bichromatic multiphoton ionization
The coherent control of electron beams and ultrafast electron wave packets
dynamics have attracted significant attention in electron microscopy as well as
in atomic physics. In order to unify the conceptual pictures developed in both
fields, we demonstrate the generation and manipulation of tailored electron
orbital angular momentum (OAM) superposition states either by employing
customized holographic diffraction masks in a transmission electron microscope
or by atomic multiphoton ionization utilizing pulse-shaper generated
carrier-envelope phase stable bichromatic ultrashort laser pulses. Both
techniques follow similar physical mechanisms based on Fourier synthesis of
quantum mechanical superposition states allowing the preparation of a broad set
of electron states with uncommon symmetries. We describe both approaches in a
unified picture based on an advanced spatial and spectral double slit and point
out important analogies. In addition, we analyze the topological charge and
discuss the control mechanisms of the free-electron OAM superposition states.
Their generation and manipulation by phase tailoring in transmission electron
microscopy and atomic multiphoton ionization is illustrated on a 7-fold
rotationally symmetric electron density distribution.Comment: K. Eickhoff and C. Rathje contributed equally to this wor
Identification of optimal assisted aspiration conditions of oocytes for use in porcine in vitro maturation: a re-evaluation of the relationship between the cumulus oocyte complex and oocyte quality
The quality of porcine oocytes for use in IVF is commonly graded according to the number of layers of cumulus cells surrounding the oocyte; together these form the cumulus oocyte complex (COC). At least three compact layers of cumulus cells is regarded as important for efficient IVP. To test this, oocytes were scored according to cumulus investment, with grade A representing COCs with three or more cumulus layers including granulosa cell-cumulus oocyte complexes, grade B those with an intact corona radiata surrounded by another layer of cumulus cells and grades C and D representing COCs with lower cumulus cell investment. These oocytes were then monitored for in vitro maturation (IVM), as assessed by tubulin immunostaining for meiotic progression, the development of a cortical granule ring, and by glutathione levels. Results indicate that grading correlates closely with nuclear maturation and cytoplasmic maturation, suggesting that grading oocytes by cumulus investment is a reliable method to predict IVM success. Importantly, Grade A and B oocytes showed no significant differences in any measure and hence using a cut-off of two or more cumulus cell layers may be optimal. We also determined the effect of assisted aspiration for oocyte retrieval, comparing the effect of needle size and applied pressure on the retrieval rate. These data indicated that both variables affected oocyte recovery rates and the quality of recovered oocytes. In combination, these experiments indicate that grade A and B oocytes have a similar developmental potential and that the recovery of oocytes of these grades is maximised by use of an 18-gauge needle and 50mmHg aspiration pressure
Molecular isomerization and fragmentation of polyatomic molecules controlled by inner-valence recollision-ionization
Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets
Recommended from our members
The language of conspiracy: A psychological analysis of speech used by conspiracy theorists and their followers on Twitter
This paper analyzes key psychological themes in language used by prominent conspiracy theorists and science advocates on Twitter, as well as those of a random sample of their follower base. We conducted a variety of psycholinguistic analyses over a corpus of 16,290 influencer tweets and 160,949 follower tweets in order to evaluate stable intergroup differences in language use among those who subscribe or are exposed to conspiratorial content and those who are focused on scientific content. Our results indicate significant differences in the use of negative emotion (e.g., anger) between the two groups, as well as a focus, especially among conspiracy theorists, on topics such as death, religion, and power. Surprisingly, we found less pronounced differences in cognitive processes (e.g., certainty) and outgroup language. Our results add to a growing literature on the psychological characteristics underlying a âconspiracist worldview.â </jats:p
Nebraska Agricultural Water Management Demonstration Network (NAWMDN): Integrating Research and Extension/Outreach
Maximizing the net benefits of irrigated plant production through appropriately designed agricultural water management programs is of growing importance in Nebraska, and other western and Midwestern states, because many areas are involved in management and policy changes to conserve irrigation water. In Nebraska, farmers are being challenged to practice conservation methods and use water resources more efficiently while meeting plant water requirements and maintaining high yields. Another challenge Nebraska experiences in it\u27s approximately 3.5âmillionâha irrigated lands is limited adoption of newer technologies/tools to help farmers better manage irrigation, conserve water and energy, and increase plant water use efficiency. In 2005, the Nebraska Agricultural Water Management Demonstration Network (NAWMDN or Network) was formed from an interdisciplinary team of partners including the Natural Resources Districts (NRD); USDAâNRCS; farmers from south central, northeast, west central, and western Nebraska; crop consultants; and University of NebraskaâLincoln faculty. The main goal of the Network is to enable the transfer of high quality researchâbased information to Nebraskans through a series of demonstration projects established in farmers\u27 fields and implement newer tools and technologies to address and enhance plant water use efficiency, water conservation, and reduce energy consumption for irrigation. The demonstration projects are supported by the scientificallyâbased field research and evaluation projects conducted at the University of NebraskaâLincoln, South Central Agricultural Laboratory located near Clay Center, Nebraska. The Network was formed with only 15 farmers as collaborators in only one of the 23 NRDs in 2005. As of late 2009, the number of active collaborators has increased to over 300 in 12 NRDs and 35 of 93 counties. The Network is impacting both water and energy conservation due to farmers adopting information and newer technologies for irrigation management. The NAWMDN is helping participants to improve irrigation management and efficiency by monitoring plant growth stages and development, soil moisture, and crop evapotranspiration. As a result, they are reducing irrigation water application amounts and associated energy savings is leading to greater profitability to participating farmers. This article describes the goals and objectives of the Network, technical and educational components, operational functions, and procedures used in the NAWMDN. The quantitative impacts in terms of water and energy conservation are reported
NEBRASKA AGRICULTURAL WATER MANAGEMENT DEMONSTRATION NETWORK (NAWMDN): INTEGRATING RESEARCH AND EXTENSION/OUTREACH
Maximizing the net benefits of irrigated plant production through appropriately designed agricultural water management programs is of growing importance in Nebraska, and other western and Midwestern states, because many areas are involved in management and policy changes to conserve irrigation water. In Nebraska, farmers are being challenged to practice conservation methods and use water resources more efficiently while meeting plant water requirements and maintaining high yields. Another challenge Nebraska experiences in it\u27s approximately 3.5âmillionâha irrigated lands is limited adoption of newer technologies/tools to help farmers better manage irrigation, conserve water and energy, and increase plant water use efficiency. In 2005, the Nebraska Agricultural Water Management Demonstration Network (NAWMDN or Network) was formed from an interdisciplinary team of partners including the Natural Resources Districts (NRD); USDAâNRCS; farmers from south central, northeast, west central, and western Nebraska; crop consultants; and University of NebraskaâLincoln faculty. The main goal of the Network is to enable the transfer of high quality researchâbased information to Nebraskans through a series of demonstration projects established in farmers\u27 fields and implement newer tools and technologies to address and enhance plant water use efficiency, water conservation, and reduce energy consumption for irrigation. The demonstration projects are supported by the scientificallyâbased field research and evaluation projects conducted at the University of NebraskaâLincoln, South Central Agricultural Laboratory located near Clay Center, Nebraska. The Network was formed with only 15 farmers as collaborators in only one of the 23 NRDs in 2005. As of late 2009, the number of active collaborators has increased to over 300 in 12 NRDs and 35 of 93 counties. The Network is impacting both water and energy conservation due to farmers adopting information and newer technologies for irrigation management. The NAWMDN is helping participants to improve irrigation management and efficiency by monitoring plant growth stages and development, soil moisture, and crop evapotranspiration. As a result, they are reducing irrigation water application amounts and associated energy savings is leading to greater profitability to participating farmers. This article describes the goals and objectives of the Network, technical and educational components, operational functions, and procedures used in the NAWMDN. The quantitative impacts in terms of water and energy conservation are reported
- âŠ