507 research outputs found

    NAVARES: A Prototype Expert System For NAVASTAR Anomoly Resolution

    Get PDF
    The purpose of this research was to demonstrate the applicability of expert systems to the domain of satellite command and control, specifically, NAVSTAR Global Positioning System anomaly resolution. A prototype expert system was developed which successfully diagnoses many Attitude, Velocity and Control Subsystem and Electrical Power Subsystem anomalies. The project was sponsored by Air Force Space Command\u27s 2nd Space Wing and was developed at the Air Force Institute of Technology

    Microlensing and the Search for Extraterrestrial Life

    Get PDF
    Are microlensing searches likely to discover planets that harbor life? Given our present state of knowledge, this is a difficult question to answer. We therefore begin by asking a more narrowly focused question: are conditions on planets discovered via microlensing likely to be similar to those we experience on Earth? In this paper I link the microlensing observations to the well-known "Goldilocks Problem" (conditions on the Earth-like planets need to be "just right"), to find that Earth-like planets discovered via microlensing are likely to be orbiting stars more luminous than the sun. This means that light from the planetary system's central star may contribute a significant fraction of the baseline flux relative to the star that is lensed. Such blending of light from the lens with light from the lensed source can, in principle, limit our ability to detect these events. This turns out not to be a significant problem, however. A second consequence of blending is the opportunity to determine the spectral type of the lensed spectral type of the lensed star. This circumstance, plus the possibility that finite-source-size effects are important, implies that some meaningful follow-up observations are likely to be possible for a subset Earth-like planets discovered via microlensing. In addition, calculations indicate that reasonable requirements on the planet's density and surface gravity imply that the mass of Earth-like planets is likely to be within a factor of ∼15\sim 15 of an Earth mass.Comment: 15 pages, 2 figures. To be published in the Astrophysical Journa

    Chemical bonding in cuprous complexes with simple nitriles: Octet rule and resonance concepts: Versus quantitative charge-redistribution analysis

    Get PDF
    Chemical bonding in a set of six cuprous complexes with simple nitriles (CN-, HNC, HCN, CH3NC, and CH3CN) is investigated by means of a recently devised analysis scheme framed in density-functional theory and quantitatively singling out concurrent charge flows such as \u3c3 donation and \u3c0 backdonation. The results of our analysis are comparatively assessed against qualitative models for charge redistribution based on the popular concepts of octet rule and resonance structures, and the relative importance of different charge-flow channels relating to \u3c3 donation, \u3c0 back-donation, polarization, and hyperconjugation is discussed on a quantitative basis

    Efficiency enhancement in two-cell CIGS photovoltaic system with low-cost optical spectral splitter.

    Get PDF
    Spectrum splitting represents a valid alternative to multi-junction solar cells for broadband light-to-electricity conversion. While this concept has existed for decades, its adoption at the industrial scale is still stifled by high manufacturing costs and inability to scale to large areas. Here we report the experimental validation of a novel design that could allow the widespread adoption of spectrum splitting as a low-cost approach to high efficiency photovoltaic conversion. Our system consists of a prismatic lens that can be manufactured using the same methods employed for conventional CPV optic production, and two inexpensive CuInGaSe(2) (CIGS) solar cells having different composition and, thus, band gaps. We demonstrate a large improvement in cell efficiency under the splitter and show how this can lead to substantial increases in system output at competitive cost using existing technologies

    Chemical promenades: Exploring potential-energy surfaces with immersive virtual reality

    Get PDF
    The virtual-reality framework AVATAR (Advanced Virtual Approach to Topological Analysis of Reactivity) for the immersive exploration of potential-energy landscapes is presented. AVATAR is based on modern consumer-grade virtual-reality technology and builds on two key concepts: (a) the reduction of the dimensionality of the potential-energy surface to two process-tailored, physically meaningful generalized coordinates, and (b) the analogy between the evolution of a chemical process and a pathway through valleys (potential wells) and mountain passes (saddle points) of the associated potential energy landscape. Examples including the discovery of competitive reaction paths in simple A + BC collisional systems and the interconversion between conformers in ring-puckering motions of flexible rings highlight the innovation potential that augmented and virtual reality convey for teaching, training, and supporting research in chemistry
    • …
    corecore