1,107 research outputs found

    Model Checking Branching Properties on Petri Nets with Transits (Full Version)

    Get PDF
    To model check concurrent systems, it is convenient to distinguish between the data flow and the control. Correctness is specified on the level of data flow whereas the system is configured on the level of control. Petri nets with transits and Flow-LTL are a corresponding formalism. In Flow-LTL, both the correctness of the data flow and assumptions on fairness and maximality for the control are expressed in linear time. So far, branching behavior cannot be specified for Petri nets with transits. In this paper, we introduce Flow-CTL* to express the intended branching behavior of the data flow while maintaining LTL for fairness and maximality assumptions on the control. We encode physical access control with policy updates as Petri nets with transits and give standard requirements in Flow-CTL*. For model checking, we reduce the model checking problem of Petri nets with transits against Flow-CTL* via automata constructions to the model checking problem of Petri nets against LTL. Thereby, physical access control with policy updates under fairness assumptions for an unbounded number of people can be verified.Comment: 23 pages, 5 figure

    Early-type galaxies in the SDSS. II. Correlations between observables

    Get PDF
    A magnitude limited sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. The sample was used to study how early-type galaxy observables, including luminosity L, effective radius R_o, surface brightness I_o, color, and velocity dispersion sigma, are correlated with one another. Measurement biases are understood with mock catalogs which reproduce all of the observed scaling relations and their dependences on fitting technique. At any given redshift, the intrinsic distribution of luminosities, sizes and velocity dispersions in our sample are all approximately Gaussian. A maximum likelihood analysis shows that sigma ~ L^{0.25\pm 0.012}, R_o ~ L^{0.63\pm 0.025}, and R_o ~ I^{-0.75\pm 0.02} in the r* band. In addition, the mass-to-light ratio within the effective radius scales as M_o/L ~ L^{0.14\pm 0.02} or M_o/L ~ M_o^{0.22\pm 0.05}, and galaxies with larger effective masses have smaller effective densities: Delta_o ~ M_o^{-0.52\pm 0.03}. These relations are approximately the same in the g*, i* and z* bands. Relative to the population at the median redshift in the sample, galaxies at lower and higher redshifts have evolved only little, with more evolution in the bluer bands. The luminosity function is consistent with weak passive luminosity evolution and a formation time of about 9 Gyrs ago.Comment: 29 pages, 11 figures. Accepted by AJ (scheduled for April 2003). This paper is part II of a revised version of astro-ph/011034

    Stellar SEDs from 0.3-2.5 Microns: Tracing the Stellar Locus and Searching for Color Outliers in SDSS and 2MASS

    Full text link
    The Sloan Digital Sky Survey (SDSS) and Two Micron All Sky Survey (2MASS) are rich resources for studying stellar astrophysics and the structure and formation history of the Galaxy. As new surveys and instruments adopt similar filter sets, it is increasingly important to understand the properties of the ugrizJHKs stellar locus, both to inform studies of `normal' main sequence stars as well as for robust searches for point sources with unusual colors. Using a sample of ~600,000 point sources detected by SDSS and 2MASS, we tabulate the position and width of the ugrizJHKs stellar locus as a function of g-i color, and provide accurate polynomial fits. We map the Morgan-Keenan spectral type sequence to the median stellar locus by using synthetic photometry of spectral standards and by analyzing 3000 SDSS stellar spectra with a custom spectral typing pipeline. We develop an algorithm to calculate a point source's minimum separation from the stellar locus in a seven-dimensional color space, and use it to robustly identify objects with unusual colors, as well as spurious SDSS/2MASS matches. Analysis of a final catalog of 2117 color outliers identifies 370 white-dwarf/M dwarf (WDMD) pairs, 93 QSOs, and 90 M giant/carbon star candidates, and demonstrates that WDMD pairs and QSOs can be distinguished on the basis of their J-Ks and r-z colors. We also identify a group of objects with correlated offsets in the u-g vs. g-r and g-r vs. r-i color-color spaces, but subsequent follow-up is required to reveal the nature of these objects. Future applications of this algorithm to a matched SDSS-UKIDSS catalog may well identify additional classes of objects with unusual colors by probing new areas of color-magnitude space.Comment: 23 pages in emulateapj format, 17 figures, 7 tables. Accepted for publication in the Astronomical Journal. To access a high-resolution version of this paper, as well as machine readable tables and an archive of 'The Hammer' spectral typing suite, see http://www.cfa.harvard.edu/~kcovey v2 -- fixed typos in Table 7 (mainly affecting lines for M8-M10 III stars

    Friendly fire and the proportion of friends to foes

    Get PDF
    Losses of inhibitory control may be partly responsible for some friendly fire incidents. The Sustained Attention to Response Task (SART; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997) may provide an appropriate empirical model for this. The current investigation aimed to provide an ecologically valid application of the SART to a small arms simulation and examine the effect of different proportions of enemy to friendly confederates. Seven university students engaged in a small arms simulation where they cleared a building floor using a near-infrared emitter gun, tasked with firing at confederates representing enemies and withholding fire to confederates representing friends. All participants completed three conditions which were differentiated by the proportion of enemies to friends present. As hypothesized, participants failed to withhold responses more often when the proportion of foes was higher, suggesting that a prepotent motor response routine had developed. This effect appeared to be disproportionately more substantial in the high foe condition relative to the others. Participants also subjectively reported higher levels of on-task focus as foe proportions increased, suggesting that they found this more mentally demanding. Future research could examine closer the nature of the performance reductions associated with high proportions of foes, as it appears that this is more complex than a simple linear relationship

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra

    Get PDF
    We present the temperature and polarization angular power spectra of the cosmic microwave background (CMB) derived from the first 5 years of WMAP data. The 5-year temperature (TT) spectrum is cosmic variance limited up to multipole l=530, and individual l-modes have S/N>1 for l<920. The best fitting six-parameter LambdaCDM model has a reduced chi^2 for l=33-1000 of chi^2/nu=1.06, with a probability to exceed of 9.3%. There is now significantly improved data near the third peak which leads to improved cosmological constraints. The temperature-polarization correlation (TE) is seen with high significance. After accounting for foreground emission, the low-l reionization feature in the EE power spectrum is preferred by \Delta\chi^2=19.6 for optical depth tau=0.089 by the EE data alone, and is now largely cosmic variance limited for l=2-6. There is no evidence for cosmic signal in the BB, TB, or EB spectra after accounting for foreground emission. We find that, when averaged over l=2-6, l(l+1)C^{BB}_l/2\pi < 0.15 uK^2 (95% CL).Comment: 29 pages, 13 figures, accepted by ApJ

    Temporal Stream Logic: Synthesis beyond the Bools

    Full text link
    Reactive systems that operate in environments with complex data, such as mobile apps or embedded controllers with many sensors, are difficult to synthesize. Synthesis tools usually fail for such systems because the state space resulting from the discretization of the data is too large. We introduce TSL, a new temporal logic that separates control and data. We provide a CEGAR-based synthesis approach for the construction of implementations that are guaranteed to satisfy a TSL specification for all possible instantiations of the data processing functions. TSL provides an attractive trade-off for synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard temporal logics, is undecidable in general. On the other hand, however, synthesis from TSL is scalable, because it is independent of the complexity of the handled data. Among other benchmarks, we have successfully synthesized a music player Android app and a controller for an autonomous vehicle in the Open Race Car Simulator (TORCS.

    Conformance-based doping detection for cyber-physical systems

    Get PDF
    We present a novel and generalised notion of doping cleanness for cyber-physical systems that allows for perturbing the inputs and observing the perturbed outputs both in the time– and value–domains. We instantiate our definition using existing notions of conformance for cyber-physical systems. We show that our generalised definitions are essential in a data-driven method for doping detection and apply our definitions to a case study concerning diesel emission tests

    A Broadband Study of Galactic Dust Emission

    Get PDF
    We have combined infrared data with HI, H2 and HII surveys in order to spatially decompose the observed dust emission into components associated with different phases of the gas. An inversion technique is applied. For the decomposition, we use the IRAS 60 and 100 micron bands, the DIRBE 140 and 240 micron bands, as well as Archeops 850 and 2096 micron wavelengths. In addition, we apply the decomposition to all five WMAP bands. We obtain longitude and latitude profiles for each wavelength and for each gas component in carefully selected Galactic radius bins.We also derive emissivity coefficients for dust in atomic, molecular and ionized gas in each of the bins.The HI emissivity appears to decrease with increasing Galactic radius indicating that dust associated with atomic gas is heated by the ambient interstellar radiation field (ISRF). By contrast, we find evidence that dust mixed with molecular clouds is significantly heated by O/B stars still embedded in their progenitor clouds. By assuming a modified black-body with emissivity law lambda^(-1.5), we also derive the radial distribution of temperature for each phase of the gas. All of the WMAP bands except W appear to be dominated by emission from something other than normal dust, most likely a mixture of thermal bremstrahlung from diffuse ionized gas, synchrotron emission and spinning dust. Furthermore, we find indications of an emissivity excess at long wavelengths (lambda > 850 micron) in the outer Galaxy (R > 8.9 kpc). This suggests either the existence of a very cold dust component in the outer Galaxy or a temperature dependence of the spectral emissivity index. Finally, it is shown that ~ 80% of the total FIR luminosity is produced by dust associated with atomic hydrogen, in agreement with earlier findings by Sodroski et al. (1997).Comment: accepted for publication by A&

    The effect of task-relevant and irrelevant anxiety-provoking stimuli on response inhibition

    Get PDF
    The impact of anxiety-provoking stimuli on the Sustained Attention to Response Task (SART; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997), and response inhibition more generally, is currently unclear. Participants completed four SARTs embedded with picture stimuli of two levels of emotion (negative or neutral) and two levels of task-relevance (predictive or non-predictive of imminent No-Go stimuli). Negative pictures had a small but detectable adverse effect on performance regardless of their task-relevance. Overall, response times and rates of commission errors were more dependent upon the predictive value (relevance) of the pictures than their attention-capturing nature (i.e., negative valence). The findings raise doubt over whether anxiety improves response inhibition, and also lend support to a response strategy perspective of SART performance, as opposed to a mindlessness or mind-wandering explanation
    • 

    corecore