Model Checking Branching Properties on
Petri Nets with Transits *

Bernd Finkbeiner!, Manuel Gieseking?,
Jesko Hecking-Harbusch!, and Ernst-Riidiger Olderog?

CISPA Helmholtz Center for Information Security, Saarbriicken, Germany
{finkbeiner, jesko.hecking-harbusch}@cispa.saarland
2 University of Oldenburg, Oldenburg, Germany
{gieseking,olderog}@informatik.uni-oldenburg.de

Abstract. To model check concurrent systems, it is convenient to dis-
tinguish between the data flow and the control. Correctness is specified
on the level of data flow whereas the system is configured on the level
of control. Petri nets with transits and Flow-LTL are a corresponding
formalism. In Flow-LTL, both the correctness of the data flow and as-
sumptions on fairness and maximality for the control are expressed in
linear time. So far, branching behavior cannot be specified for Petri nets
with transits. In this paper, we introduce Flow-CTL" to express the in-
tended branching behavior of the data flow while maintaining LTL for
fairness and maximality assumptions on the control. We encode physical
access control with policy updates as Petri nets with transits and give
standard requirements in Flow-CTL"*. For model checking, we reduce the
model checking problem of Petri nets with transits against Flow-CTL*
via automata constructions to the model checking problem of Petri nets
against LTL. Thereby, physical access control with policy updates under
fairness assumptions for an unbounded number of people can be verified.

1 Introduction

Petri nets with transits [8] superimpose a transit relation onto the flow relation
of Petri nets. The flow relation models the control in the form of tokens moving
through the net. The transit relation models the data flow in the form of flow
chains. The configuration of the system takes place on the level of the control
whereas correctness is specified on the level of the data flow. Thus, Petri nets
with transits allow for an elegant separation of the data flow and the control
without the complexity of unbounded colored Petri nets [14]. We use physical
access control [T2ITTIT3] as an application throughout the paper. It defines and
enforces access policies in physical spaces. People are represented as the data
flow in the building. The control defines which policy enforcement points like

*This work has been supported by the German Research Foundation (DFG) through
Grant Petri Games (392735815) and through the Collaborative Research Center “Foun-
dations of Perspicuous Software Systems” (TRR 248, 389792660), and by the European
Research Council (ERC) through Grant OSARES (683300).

2 B. Finkbeiner et al.

doors are open to which people identified by their RFID cards [19]. Changing
access policies is error-prone as closing one door for certain people could be
circumvented by an alternative path. Therefore, we need to verify such updates.

Flow-LTL [8] is a logic for Petri nets with transits. It specifies linear time
requirements on both the control and the data flow. Fairness and maximality
assumptions on the movement of tokens are expressed in the control part. The
logic lacks branching requirements for the data flow. In physical access control,
branching requirements can specify that a person has the possibility to reach a
room but not necessarily has to visit it. In this paper, we introduce Flow-CTL*
which maintains LTL to specify the control and adds CTL* to specify the data
flow. Fairness and maximality assumptions in the control part dictate which
executions, represented by runs, are checked against the data flow part.

This leads to an interesting encoding for physical access control in Petri nets
with transits. Places represent rooms to collect the data flow. Transitions rep-
resent doors between rooms to continue the data flow. The selection of runs by
fairness and maximality assumptions on the control restricts the branching be-
havior to transitions. Hence, the data flow is split at transitions: Every room has
exactly one outgoing transition enabled unless all outgoing doors are closed. This
transition splits the data flow into all successor rooms and thereby represents
the maximal branching behavior.

We present a reduction of the model checking problem of safe Petri nets with
transits against Flow-CTL* to the model checking problem of safe Petri nets
against LTL. This enables for the first time the automatic verification of physical
access control with policy updates under fairness and maximality assumptions
for an unbounded number of people. Policy updates occur for example in the
evening when every employee is expected to eventually leave the building and
therefore access is more restricted. Such a policy update should prevent people
from entering the building but should not trap anybody in the building.

Our reduction consists of three steps: First, each data flow subformula of
the given Flow-CTL* formula is represented, via an alternating tree automaton,
an alternating word automaton, and a nondeterministic Biichi automaton, by a
finite Petri net to guess and then to verify a counterexample tree. Second, the
original net for the control subformula of the Flow-CTL* formula and the nets
for the data flow subformulas are connected in sequence. Third, an LTL formula
encodes the control subformula, the acceptance conditions of the nets for the
data flow subformulas, and the correct skipping of subnets in the sequential
order. This results in a model checking problem of safe Petri nets against LTL.

The remainder of this paper is structured as follows: In Sect. 2] we motivate
our approach with an example. In Sect. |3 we recall Petri nets and their extension
to Petri nets with transits. In Sect. [d] we introduce Flow-CTL*. In Sect. 5 we
express fairness, maximality, and standard properties for physical access control
in Flow-CTL*. In Sect. [6 we reduce the model checking problem of Petri nets
with transits against Flow-CTL* to the model checking problem of Petri nets
against LTL. Section [7] presents related work and Sect. [§] concludes the paper.
Further details can be found in the full version of the paper [10].

Model Checking Branching Properties on Petri Nets with Transits 3

i
kitchen + hall + lab

Fig. 1: The layout of a simple building is shown. There are three rooms indicated
by gray boxes which are connected by doors indicated by small black boxes.

2 DMotivating Example

We motivate our approach with a typical example for physical access control.
Consider the very simple building layout in Fig. [I} There are three rooms con-
nected by two doors. An additional door is used to enter the building from the
outside. Only employees have access to the building. A typical specification re-
quires that employees can access the lab around the clock while allowing access
to the kitchen only during daytime to discourage too long working hours. Mean-
while, certain safety requirements have to be fulfilled like not trapping anybody
in the building. During the day, a correct access policy allows access to all rooms
whereas, during the night, it only allows access to the hall and to the lab.

Figure [2] shows a Petri nets with transits modeling the building layout from
Fig.[1} There are corresponding places (represented by circles) with tokens (rep-
resented by dots) for the three rooms: hall, lab, and kitchen. These places are
connected by transitions (represented by squares) of the form from—to for from
and to being rooms. The doors from the kitchen and lab to the hall cannot be
closed as this could trap people. For all other doors, places of the form o0fom—to
and cfrom—to €xist to represent whether the door is open or closed.

In (safe) Petri nets, transitions define the movement of tokens: Firing a tran-
sition removes one token from each place with a black arrow leaving to the
transition and adds one token to each place with a black arrow coming from
the transition. Firing transition evening moves one token from place o to
place ¢, as indicated by the single-headed, black arrows and one token from
and to each of the places hall, lab, and kitchen as indicated by the double-headed,
black arrows. Firing transitions modeling doors returns all tokens to the same
places while the transit relation as indicated by the green, blue, and orange
arrows represents employees moving through the building. Dashed and dotted
arrows only distinguish them from black arrows in case colors are unavailable.

Firing transition enterHall starts a flow chain modeling an employee entering
the building as indicated by the single-headed, green (dashed) arrow. Meanwhile,
the double-headed, blue (dotted) arrow maintains all flow chains previously in
hall. All flow chains collectively represent the data flow in the modeled system
incorporating all possible control changes. Firing transitions from—to, which
correspond to doors, continues all flow chains from place from to place to as
indicated by the single-headed, green (dashed) arrows and merges them with
all flow chains in the place to as indicated by the double-headed, blue (dotted)
arrows. For example, firing transition hall—lab lets all employees in the hall
enter the lab. When employees leave the hall, their flow chain ends because it is
not continued as indicated by the lack of colored arrows at transition leaveHall.

4 B. Finkbeiner et al.

lab— hall N <

P

€ === === -

enterHall D
\

N
o
e
e
HE
1
1
1
l

* hall— kitchen ~

kitchen— hall —I - - - --—-—-—----

Fig. 2: The Petri net with transits encoding the building from Fig. [1]is depicted.
Rooms are modeled by corresponding places, doors by transitions. Tokens in
places starting with o configure the most permissive access policy during the
day. In the evening, access to the kitchen is restricted. Employees in the building
are modeled by the transit relation depicted by green, blue, and orange arrows.

Flow-CTL* allows the splitting of flow chains in transitions. Splitting flow
chains corresponds to branching behavior. Thus, when the doors to the lab and
kitchen are open, we represent this situation by one transition which splits
the flow chains. Transition hall—[l,k] realizes this by the single-headed, green
(dashed) arrows from the hall to the lab and kitchen. Branching results in a flow
tree for the possible behavior of an employee whereas a flow chain represents
one explicit path from this flow tree, i.e., each employee has one flow tree with
possibly many flow chains. Notice that transition hall—[l,k] can only be fired
during the day, because, when firing transition evening, access to the kitchen
is revoked. Then, only transition hall—lab can be fired for moving flow chains
from the hall. For simplicity, we restrict the example to only one time change
which implies that the transition hall—kitchen can never be fired. Firing tran-
sition evening continues all flow chains in the three places hall, lab, and kitchen,
respectively, as indicated by the distinctly colored, double-headed arrows. Thus,
we can specify requirements for the flow chains after the time change.

We specify the correctness of access policies with formulas of the logic Flow-
CTL*. The formula A AGEFlab expresses persistent permission requiring that
all flow chains (A) on all paths globally (AG) have the possibility (EF) to reach
the lab. The formula A A ((EFkitchen)U evening) expresses dependent permission
requiring that all flow chains on all paths (A) have the possibility to reach the
kitchen until (U) evening. Both properties require weak or strong fairness for
all transitions modeling doors to be satisfied. The second property additionally
requires weak or strong fairness for transition evening to be satisfied. Flow-CTL*
and specifying properties with it are discussed further in Sect. [d] and Sect.

Model Checking Branching Properties on Petri Nets with Transits 5

3 Petri Nets with Transits

We recall the formal definition of Petri nets with transits [§] as extension of
Petri nets [I7]. We refer the reader to the full paper for more details [I0]. A safe
Petri net is a structure S/ = (P, T, F, In) with the set of places P, the set of
transitions I, the (control) flow relation F C (P x T)U(T x P), and the initial
marking In C P. In safe Petri nets, each reachable marking contains at most
one token per place. The elements of the disjoint union 9 U J are considered
as nodes. We define the preset (and postset) of a node x from Petri net A4 as
pre’(z) = {y € PUT | (y,x) € F} (and post” (z) = {y € PUT | (z,y) €
F1}). A safe Petri net with transits is a structure /' = (P, T, %, In,T") which
additionally contains a transit relation T refining the flow relation of the net
to define the data flow. For each transition ¢t € I, 7(t) is a relation of type
T(t) C (pre” (t) U {>}) x post” (t), where the symbol 1> denotes a start. With
> 1'(t) g, we define the start of a new data flow in place ¢ via transition ¢ and
with p 7'(t) ¢ that all data in place p transits via transition ¢ to place gq. The
postset regarding T of a place p € P and a transition t € post” (p) is defined by
post” (p,t) = {p' € 2 | (n,p') € T(1)}.

The graphic representation of 7°(¢) in Petri nets with transits uses a color
coding as can be seen in Fig. [2 Black arrows represent the usual control flow.
Other matching colors per transition are used to represent the transits of the
data flow. Transits allow us to specify where the data flow is moved forward,
split, and merged, where it ends, and where data is newly created. The data
flow can be of infinite length and at any point in time (possibly restricted by the
control) new data can enter the system at different locations.

As the data flow is a local property of each distributed component (possibly
shared via joint transitions) it is convenient that Petri nets with transits use a
true concurrency semantics to define the data flow. Therefore, we recall the no-
tions of unfoldings and runs [5lJ6] and their application to Petri nets with transits.
In the unfolding of a Petri net ./, every transition stands for the unique occur-
rence (instance) of a transition of /4 during an execution. To this end, every loop
in J/ is unrolled and every backward branching place is expanded by multiply-
ing the place. Forward branching, however, is preserved. Formally, an unfolding
is a branching process BV = (WY, \V) consisting of an occurrence net 4V
and a homomorphism AV that labels the places and transitions in 4V with the
corresponding elements of /. The unfolding exhibits concurrency, causality, and
nondeterminism (forward branching) of the unique occurrences of the transitions
in ./ during all possible executions. A run of / is a subprocess 3 = (N, p)
of Y, where Vp € P : \post/VR (p)| <1 holds, i.e., all nondeterminism has been
resolved but concurrency is preserved. Thus, a run formalizes one concurrent
execution of /. We lift the transit relation of a Petri net with transits to any
branching process and thereby obtain notions of runs and unfoldings for Petri
nets with transits. Consider a run 8 = (/% p) of # and a finite or infinite
firing sequence ¢ = My[to)Mi[t1)Ms -+ of /' with My = In'. This sequence
covers Bif (Vpe PR :F eN:pe M)AVt € TR :Fi eN:t=t),ie,all
places and transitions in 4% appear in ¢. Several firing sequences may cover £3.

6 B. Finkbeiner et al.

We define flow chains by following the transits of a given run. A (data) flow
chain of arun B = (N, p) of a Petri net with transits .,/ is a mazimal sequence
& =19, p0,t1,p1,ta . .. of connected places and transitions of 4 with

(1) (>, p0) € T (ty),
(con) (pi—1,pi) € TE(t;) for all i € N\ {0} if £ is infinite and for all i € {1,...n}
if € =tg,po,t1,...,tn, Py is finite,
(max) if & = t9,po,t1,--tn, P is finite there is no transition + € % and place
q € P such that (pn,q) € TE(t).

A flow chain suffix & = to,po,t1,p1,t2... of a run S requires constraints (con),
(max), and in addition to (I) allows that the chain has already started, i.e.,
Ip € PR (p,po) € TE(to).

A XY-labeled tree over a set of directions @ C N is a tuple (T,v), with a
labeling function v : T'— X and a tree T' C 2™ such that if x-c € T for x € 9*
and ¢ € 9, then both v € T and for all 0 < ¢ < calso z-¢ € T holds. A
(data) flow tree of a run 3 = (N, p) represents all branching behavior in the
transitions of the run w.r.t. the transits. Formally, for each t, € I and place
po € PE with (>>,p0) € TE(ty), there is a TE x PL-labeled tree 7 = (T, v) over
directions 2 C {0, ... ,max{|postTR(p, t)—-1| pePinte post? " (p)}} with

1. v(€) = (to,po) for the root €, and

2. if n € T with v(n) = (t,p) then for the only transition ¢’ € post/VR(p)
(if existent) we have for all 0 < i < |postTR(p7 t')| that n-¢ € T with
v(n-i) = (t',q) for ¢ = (postTR(p, t")); where <postTR(p, t")); is the i-th
value of the ordered list (post™" (p,t')).

Figure [3| shows a finite run of the example from Fig. [2| with two flow trees. The
first tree starts with transition enterHally, i.e., v(e) = (enterHally, hally) and is
indicated by the gray shaded area. This tree represents an extract of the pos-
sibilities of a person entering the hall during the day ending with the control
change to the evening policy. The second tree (v(e) = (enterHally, hallz),v(0) =
(lab—hall, hally), v(00) = (kitchen—hall, halls), v(000) = (evening, hallg)) shows
the possibilities of a person in this run who later enters the hall and can, because
of the run, only stay there. Note that the trees only end due to the finiteness of
the run. For maximal runs, trees can only end when transition leaveHall is fired.

4 Flow-CTL* for Petri Nets with Transits

We define the new logic Flow-CTL* to reason about the Petri net behavior and
the data flow individually. Properties on the selection of runs and the general
behavior of the net can be stated in LTL, requirements on the data flow in CTL*.

4.1 LTL on Petri Net Unfoldings

We recall LTL with atomic propositions AP = % U S on a Petri net #/ =
(P,9,%,1In) and define the semantics on runs and their firing sequences. We

Model Checking Branching Properties on Petri Nets with Transits 7

hally op_y; Oh_s1 labg laby laby labs ch_sk

.| ~ .
2

y R hall hall hall

. Lal
. N Sl A kitehenznaty ~X NG @
oy emteraiy ” g lab=hal % <] Evening

p | s e N ~

p
= g
oh Sk ’ kitcheng kitchenq T kitcheno kitchens

°h—k

Fig.3: A finite run of the Petri net with transits from Fig. |2| with two data flow
trees is depicted. The first one is indicated by the gray shaded area.

use the ingoing semantics, i.e., we consider the marking and the transition used
to enter the marking, and stutter in the last marking for finite firing sequences.

Syntactically, the set of linear temporal logic (LTL) formulas LTL over AP
is defined by ¢ = true | a | = | Y1 Aba | O | Y1 U 2, with a € AP and
O being the next and % the until operator. As usual, we use the propositional
operators V, —, and <+, the temporal operators O = true % ¢ (the eventually
operator) and ¢ = =) (the always operator) as abbreviations.

For a Petri net /', we define a trace as a mapping o : N — 247, The i-th
suffix o° : N — 247 is a trace defined by o'(j) = o(j + i) for all j € N. To
a (finite or infinite) covering firing sequence ¢ = My[tg)M;[t1)Ms - -+ of a run
B = (N p)of &, we associate a trace o(¢) : N — 247 with ¢(¢)(0) = p(Mp),
a(€)(i) = {p(ti—1)} U p(M;) for all i« € N\ {0} if ¢ is infinite and o({)(i) =
{p(ti—1)} U p(M;) for all 0 < i < n, and o(¢)(j) = p(M,) for all j > n if
¢ = Molto) - - [tn—1)M,, is finite. Hence, a trace of a firing sequence covering a
run is an infinite sequence of states collecting the corresponding marking and
ingoing transition of ./, which stutters on the last marking for finite sequences.

The semantics of an LTL formula v € LTL on a Petri net ./ is defined over
the traces of the covering firing sequences of its runs: 4 |=pqp. ¢ iff for all runs 3
of /' : B ¥, B Evn ¢ iff for all firing sequences ¢ covering 5 : o(¢) Frm ¥,
o Fm true, o oo a iff a € 0(0), o [) iff not o = ¢, 0 o Y1 A e
iff o)ZLTL 11 and o)ZLTL 7/{2, o ’:LTL Oy iff ol)ZLTL ¥, and o ':LTL Y1 U o iff
there exists a j > 0 with 07 Epq ¥ and 0" Epq 91 holds for all 0 <i < j .

4.2 CTL* on Flow Chains

To specify the data flow of a Petri net with transits #/ = (#,9,%,In,T), we
use the complete computation tree logic (CTL*). The set of CTL* formulas CTL*
over AP = U T is given by the following syntaz of state formulas: @ ::= a |
@ | Py APy | E¢ where a € AP, &, §1, 4 are state formulas, and ¢ is a path
formula with the following syntaz: ¢ == P | = ¢ | p1 A2 | X & | 91U ¢p2 where @
is a state formula and ¢, ¢1,, ¢2 are path formulas. We use the propositional
operators V, —, <+, the path quantifier A¢p = =E—¢, and the temporal operators
F¢ = true U ¢, G¢ = “F—¢, p1Rp2 = =(—¢1U—¢s) as abbreviations.

8 B. Finkbeiner et al.

To a (finite or infinite) flow chain suffix £ = tg, po, t1,p1,t2,... of a Tun 8 =
(W p) of ¥, we associate a trace o(¢) : N — & = {{t,p},{p} | p€ PEALE
T BY with o(&)(i) = {ti, p;} for all i € N if £ is infinite and o(¢)(i) = {t;, pi} for
all i <n, and o(£)(j) = {pn} for all j > n if & = tg,po,t1,p1,- - -, tn, Pn is finite.
Hence, a trace of a flow chain suffix is an infinite sequence of states collecting
the current place and ingoing transition of the flow chain, which stutters on the
last place p of a finite flow chain suffix. We define o5({p})(i) = {p} for all i € N
to stutter on the last place of a finite flow chain suffix.

The semantics of a computation tree logic formula ¢ € CTL* is evaluated on
a given run 3 = (N, p) of the Petri net with transits ./ and a state s € § of a
trace o (&) of a flow chain suffix £ or the trace itself:

B, s Eer- a iff a € p(s)

B,s Ecmr ~ P iff not B,s =c- P

B,5 Ferr @1 APy iff B,5 e @1 and B, s e Po

B,s Ecr Eo iff there erists some flow chain suffix £ = tg, pg,... of 8
with pg € s such that 8,0(€) e+ ¢ holds for s £ P
and 3, 05(s) Ecr- ¢ holds for s C P

B,o):CTL* 7 iff 570(0) |:CTL* 7

B,0 Fcrr ~ ¢ iff not 3,0 e ¢

/B,U)ZCTL* ¢51 /\¢2 iff 670 ':CTL* ¢1 and 5,0 ':CTL* ¢2

B,o):CTL* X iff 5,01 IZCTL* ¢

B,0 e 01U ¢ iff there exists some j > 0 with 3,07 =cr+ ¢2 and
for all 0 < i < j the following holds: 3,0° |=crL ¢1

with atomic propositions a € AP, state formulas @, ®;, and &5, and path formu-
las ¢, 1, and ¢o. Note that since the formulas are evaluated on the runs of J/,
the branching is in the transitions and not in the places of A/.

4.3 Flow-CTL*

Like in [8], we use Petri nets with transits to enable reasoning about two sep-
arate timelines. Properties defined on the run of the system concern the global
timeline and allow to reason about the global behavior of the system like its
general control or fairness. Additionally, we can express requirements about the
individual data flow like the access possibilities of people in buildings. These
requirements concern the local timeline of the specific data flow. In Flow-CTL*,
we can reason about these two parts with LTL in the run and with CTL* in the
flow part of the formula. This is reflected in the following syntax:

W:@/)|W1/\W2‘q/1\/W2|w—>W|A(p

where ¥, U1, ¥y are Flow-CTL* formulas, v is an LTL formula, and ¢ is a CTL*
formula. We call o, = A ¢ flow formulas and all other subformulas run formulas.

Model Checking Branching Properties on Petri Nets with Transits 9

v X /X x
(—0 [O—F O—0>E—I[]
(a) Permission: AEFy (b) Prohibition: AAG—¢ (c) Blocking: AAG(p = AG—)

day: vV /X normal: X
N 7~ X
T O 0
v /X v /X ~— ~—
D)E) night: v emergency: v /X

(d) Way-pointing: AA(pR—) (e) Policy update: (f) Emergency situation:
AAG(time = EFp) AA(AG—-pUXemergency)

Fig. 4: Illustrations for standard properties of physical access control are de-
picted. Gray boxes represent rooms and arrows represent directions of doors
that can be opened (v'), closed (X), or are not affected by the property (v/X).

The semantics of a Petri net with transits # = (2,7, %, In,T) satisfying
a Flow-CTL* formula ¥ is defined over the covering firing sequences of its runs:

N ET iff for alltuns Sof N : B EW

BEW iff for all firing sequences ¢ covering 8: B,0(¢) W
B,o = iff o v

B,o =0 APy iff B0 =W and 5,0 | P

B,o EW VU, iff B0 =W or 8,0 | W,

B,oEv—W¥ iff B 01 implies 5,0 =¥

B,o=Ap iff for all flow chains & of 8 : §8,0(§) e+ ¢

Due to the covering of the firing sequences and the maximality constraint of the
flow chain suffixes, every behavior of the run is incorporated. The operator A
chooses flow chains rather than flow trees as our definition is based on the com-
mon semantics of CTL* over paths. Though it suffices to find one of the possibly
infinitely many flow trees for each flow formula to invalidate the subformula,
checking the data flow while the control changes the system complicates the di-
rect expression of the model checking problem within a finite model. In Sect. [6}
we introduce a general reduction method for a model with a finite state space.

5 Example Specifications

We illustrate Flow-CTL* with examples from the literature on physical access
control [I8/T3]. Branching properties like permission and way-pointing are given
as flow formulas, linear properties like fairness and maximality as run formulas.

5.1 Flow Formulas

Figure [4] illustrates six typical specifications for physical access control [I8JI3].

10 B. Finkbeiner et al.

Permission. Permission (cf. Fig. requires that a subformula ¢ can be
reached on one path (AEF¢p). In our running example, permission can be re-
quired for the hall and the lab. Permission can be extended as it requires reaching
the subformula once. Persistent permission then requires that, on all paths, the
subformula ¢ can be repeatedly reached on a path (AAGEFy).

Prohibition. Prohibition (cf. Fig.[4b)) requires that a subformula ¢, for example
representing a room, can never be reached on any path (AAG—). In our running
example, closing the door to the kitchen would satisfy prohibition for the kitchen.
Blocking. Blocking (cf. Fig. requires for all paths globally that, after reach-
ing subformula ¢, the subformula ¢ cannot be reached (AAG(¢ = AG—)).
This can be used to allow a new employee to only enter one of many labs.
Way-pointing. Way-pointing (cf. Fig. ensures for all paths that subfor-
mula 1 can only be reached if ¢ was reached before (AA(pR—))). This can be
used to enforce a mandatory security check when entering a building.

Policy update. A policy update (cf. Fig. allows access to subformula ¢
according to a time schedule (AAG(time = EFp)) with time being a transition.
This can be used to restrict access during the night.

Emergency. An emergency situation (cf. Fig. can revoke the prohibition of
subformula ¢ at an arbitrary time (AA(AG-pUXemergency)) with emergency
being a transition. An otherwise closed door could be opened to evacuate people.
The next operator X is necessary because of the ingoing semantics of Flow-CTL*.

5.2 Run Formulas

Flow formulas require behavior on the maximal flow of people in the building.
Doors are assumed to allow passthrough in a fair manner. Both types of assump-
tions are expressed in Flow-CTL* as run formulas.

Maximality. A run § is interleaving-mazimal if, whenever some transition is
enabled, some transition will be taken: 8 = O(V,cq pre(t) — V,es Of). A
run (8 is concurrency-maximal if, when a transition ¢ is from a moment on always
enabled, infinitely often a transition ¢ (including ¢ itself) sharing a precondition
with ¢ is taken: 8 = Ao (OO pre(t) — I:l<>\/p € pre(t), ' € post(p) t).
Fairness. A run [is weakly fair w.r.t. a transition ¢ if, whenever ¢ is always
enabled after some point, ¢ is taken infinitely often: 8 =<0 pre(t) — Ot

A run 8 is strongly fair w.r.t. t if, whenever t is enabled infinitely often, ¢ is
taken infinitely often: 8 =< pre(t) — OO .

6 Model Checking Flow-CTL* on Petri Nets with
Transits

We solve the model checking problem for a given Flow-CTL* formula ¥ and a
safe Petri net with transits .4 in four steps:

1. For each flow subformula A ¢; of ¥, a subnet //;” is created via a sequence
of automata constructions which allows to guess a counterexample, i.e., a
flow tree not satisfying ¢;, and to check for its correctness.

Model Checking Branching Properties on Petri Nets with Transits 11

() s
'Petri net with transits /4" H‘(FIOW—CTL* formula J/)i input

[— —> — —> = >
A5 =TI =5l 47 =TI+ IB = e o 2 [T+ [Baa| 3

TWA
|T| + [En]

Fig. 5: Overview of the model checking procedure: For a given safe Petri net with
transits 4 and a Flow-CTL* formula ¥, a standard Petri net 4/~ and an LTL
formula 1)~ are created: For each flow subformula A ¢, create (i) a labeled Kripke
structure #(ap,) and (ii) the alternating tree automaton 7., construct (iii)
the alternating word automaton &/, = T-,, X F(y ap,), and from that (iv)
the Biichi automaton A-,, with edges F;, which then (v) is transformed into a
Petri net /. These subnets are composed to a Petri net ./~ such that they
get subsequently triggered for every transition fired by the original net. The
constructed formula 1~ skips for the run part of ¥ these subsequent steps and
checks the acceptance of the guessed tree for each automaton. The problem is
then solved by checking 4~ Epqm ¢~

2. The Petri net /> is created by composing the subnets //;~ to a copy of A
such that every firing of a transition subsequently triggers each subnet.

3. The formula ¥~ is created such that the subnets .#;~ are adequately skipped
for the run part of ¥, and the flow parts are replaced by LTL formulas
checking the acceptance of a run of the corresponding automaton.

4. /> =L 7 is checked to answer A = .

The construction from a given safe Petri net with transits /' = (2,7, %, In,T)
and a Flow-CTL* formula ¥ with n € N flow subformulas pa; = A, with
atomic propositions AP; to a Petri net /> = (9>, >, %>, F;, In”) with in-
hibitor arcs (denoted by %;) and an LTL formula ¥~ is defined in the following
sections. More details and proofs can be found in the full paper [10]. An inhibitor
arc connects a place p and a transition ¢ of a Petri net such that ¢ is only enabled
when p is empty. Figure [5| gives a schematic overview of the procedure.

6.1 Automaton Construction for Flow Formulas

In Step 1, we create for each flow subformula A ¢; of ¥ with atomic proposi-
tions AP; a nondeterministic Biichi automaton A-,, which accepts a sequence

12 B. Finkbeiner et al.

of transitions of a given run if the corresponding flow tree satisfies —p;. This
construction has four steps:

(i) Create the labeled Kripke structure (s 4 p,) which, triggered by transitions
t € 7, tracks every flow chain of /. Each path corresponds to a flow chain.
(i) Create the alternating tree automaton 7., for the negation of the CTL*
formula ; and the set of directions @ C {0,...,max{|post” (p,t)| —1 | p €
P At € post” (p)}} which accepts all 24F:-labeled trees with nodes of degree
in 9 satisfying —; [15].
(iii) Create the alternating word automaton &/-,, = T-,, X F(.x ap,) like in [15].
(iv) Alternation elimination for &/-,, yields the nondeterministic Biichi automa-
ton A, [16/4].

Step (i) and Step (iv) are well-established constructions. For Step (iii), we mod-
ify the construction of [I5] by applying the algorithm for the groups of equally
labeled edges. By this, we obtain an alternating word automaton with the alpha-
bet A = F U{s} of the labeled Kripke structure rather than an alternating word
automaton over a 1-letter alphabet. This allows us to check whether the, by the
input transition dynamically created, system satisfies the CTL* subformula ;.

Step (i) of the construction creates the labeled Kripke structure #(s ap,) =
(AP, S, So, L, A, R) with a set of atomic propositions AP = AP;, a finite set of
states S = ((NAP) x P)U P, the initial states Sy C S, the labeling function
L:S — 247 the alphabet A= U{s}, and the labeled transition relation R C
Sx Ax S. The Kripke structure serves (in combination with the tree automaton)
for checking the satisfaction of a flow tree of a given run. Hence, the states track
the current place of the considered chain of the tree and additionally, when
the transition extending the chain into the place occurs in the formula, also this
ingoing transition. The initial states Sy are either the tuples of transitions ¢; and
places p; which start a flow chain, i.e., all (t;,p;) € I x P with (>, p;) € T(¢;)
when t; € AP or only the place p; otherwise. The labeling function L labels the
states with its components. The transition relation R connects the states with
respect to the transits, connects each state (¢,p) € S with s-labeled edges to
the state p € S, and loops with s-labeled edges in states s € & to allow for the
stuttering of finite chains.

Lemma 1 (Size of the Kripke Structure). The constructed Kripke structure
FHw,ap,y has O(|AP; N T |- |N |+ |N|) states and O(|¥3|) edges.

Note that the number of edges stems from the number of transits (p,t,q) €
P X T x P used in the Petri net with transits .

The size of the Biichi automaton is dominated by the tree automaton con-
struction and the removal of the alternation. Each construction adds one expo-
nent for CTL*.

Lemma 2 (Size of the Biichi Automaton). The size of the Biichi automa-
ton A, is in 0(22“;’"'/’/'3) for specifications p; in CTL* and in 0(2“""”/‘3) for
specifications in CTL.

Model Checking Branching Properties on Petri Nets with Transits 13

6.2 From Petri Nets with Transits to Petri Nets

In Step 2, we construct for the Petri net with transits ./ and the Bichi au-
tomata A, for each flow subformula ps; = Ap; of ¥, a Petri net 4~ by
composing a copy of /' (without transits), denoted by /5, to subnets //;~ corre-
sponding to A-,,, such that each copy is sequentially triggered when a transition
of Wz fires. The subnet ,#;”, when triggered by transitions t € I, guesses non-
deterministically the violating flow tree of the operator A and simulates A—,.
Thus, a token from the initially marked place [¢], is moved via a transition for
each transition ¢ € I starting a flow chain to the place corresponding to the
initial state of A—,. For each state s of A-,, we have a place [s],, and, for each
edge (s,l,5’), a transition labeled by ! which moves the token from [s]; to [s]..

There are two kinds of stutterings: global stuttering for finite runs and local
stuttering for finite flow chains. To guess the starting time of both stutterings,
there is an initially marked place N, a place S, and a transition which can switch
from normal to stuttering mode for the global stuttering in /5 and for the lo-
cal stutterings in each subnet .#;~ (denoted by [N],[S]). The original transitions
of #5 and the transitions of a subnet ,#;~ corresponding to a transition t € I
depend on the normal mode. The s-labeled transitions (used for global stutter-
ing) of the subnet depend on the stuttering mode. To enable local stuttering,
we add, for each edge e = (s,s,5") of A, a transition ¢~ for each transition
t € 7 for which no edge (s,t,s”) exists in A—,,. These transitions depend on the
stuttering mode and move the token according to their corresponding edge e.

The original part /#;5 and the subnets ./~ are connected in a sequential
manner. The net 45 has an initially marked activation place —, in the preset of
each transition, the subnets have one activation place [—¢] in the preset of every
transition ¢~ corresponding to a transition t € (normal as well as stuttering).
The transitions move the activation token to the corresponding places of the next
subnet (or back to /3). To ensure the continuation even though the triggering
transition does not extend the current flow tree (e.g., because it is a concurrent
transition of the run), there is a skipping transition for each transition ¢t €
which moves the activation token when none of the states having a successor edge
labeled with ¢ are active. For the global stuttering, each subnet has an activation
place [—,);, in which an additional transition ¢, in /5 puts the active token
if the stuttering mode of /5 is active. Each s-labeled transition of the subnets
moves this token to the next subnet (or back to /).

By that, we can check the acceptance of each A-,, by checking if the subnet
infinitely often reaches any places corresponding to a Biichi state of A-,. This
and only allowing to correctly guess the time point of the stutterings is achieved
with the formula described in Sect. A formal definition is given in in the full
paper [I0]. The size of the constructed Petri net is dominated by the respective
single- or double-exponential size of the nondeterministic Biichi automata.

Lemma 3 (Size of the Constructed Net). The constructed Petri net with
inhibitor arcs /'~ for a Petri net with transits & and n nondeterministic Biichi
automata A—,, = (7 U{s},Qi, I;, E;, F;) has O(|V|-n+|N|+ >, |Qi]) places
and O(|NV > - n+ ||+ X0 Bl + | V|- Yi, |Qi]) transitions.

14 B. Finkbeiner et al.

6.3 From Flow-CTL* Formulas to LTL Formulas

The formula transformation from a given Flow-CTL* formula ¥ and a Petri net
with transits /" into an LTL formula (Step 3) consists of three parts:

First, we substitute the flow formulas pa,; = A ¢, with the acceptance check of
the corresponding automaton A-,, i.e., we substitute a; with OOV [b];
for the Biichi states F; of A-,.

Second, the sequential manner of the constructed net /> requires an adap-
tation of the run part of ¥. For a subformula iy % 1, with transitions t € I
as atomic propositions or a subformula O % in the run part of ¥, the sequential
steps of the subnets have to be skipped. Let 75 be the transition of the original
copy #g , ;” the transitions of the subnet #;”, 9=, the transitions of the subnet
A7 which skip the triggering of the automaton in the normal mode, and ty_.s
the transition switching /5 from normal to stuttering mode. Then, because of
the ingoing semantics, we can can select all states corresponding to the run part
with M = vt€=°70>\{t/vas} t together with the initial state i = =\/,. o~ t. Hence, we
replace each subformula 11 % 15 containing transitions t € I as atomic propo-
sitions with (MV i) — 1) Z((MV i) — t2) from the inner- to the outermost
occurrence. For the next operator, the second state is already the correct next
state of the initial state also in the sense of the global timeline of 1~ . For all other
states belonging to the run part (selected by the until construction above), we
have to get the next state and then skip all transitions of the subnet. Thus, we re-
place each subformula O ¢ with i -+ QO Y A-1 — O(\/t€9>\%> tu \/t,e%> t' A1)
from the inner- to the outermost occurrence.

Third, we have to ensure the correct switching into the stuttering mode. By
skip; = _'<>D((Vt€57i> t) = (Vypeg, t')) asubnet is enforced to switch into its
stuttering mode if necessary. If it wfongly selects the time point of the global
stuttering, the run stops. Hence, we obtain the formula ¢~ = (OO —,) A
/\ie{1,...,n} skip;) — ¢ by only selecting the runs where the original part is
infinitely often activated and each subnet chooses its stuttering mode correctly.

Since the size of the formula depends on the size of the constructed Petri
net /it is also dominated by the Biichi automaton construction.

Lemma 4 (Size of the Constructed Formula). The size of the constructed
formula = is double-exponential for specifications given in CTL* and single-
exponential for specifications in CTL.

We can show that the construction of the net and the formula adequately fit
together such that the additional sequential steps of the subnets are skipped in
the formula and the triggering of the subnets simulating the Biichi automata as
well as the stuttering is handled properly.

Lemma 5 (Correctness of the Transformation). For a Petri net with tran-
sits /' and a Flow-CTL* formula ¥, there exists a safe Petri net N/~ with in-
hibitor arcs and an LTL formula W= such that ¥/ =V iff ¥/~ v V.

The complexity of the model checking problem of Flow-CTL* is dominated
by the automata constructions for the CTL* subformulas. The need of the alter-

Model Checking Branching Properties on Petri Nets with Transits 15

nation removal (Step (iv) of the construction) is due to the checking of branch-
ing properties on structures chosen by linear properties. In contrast to standard
CTL* model checking on a static Kripke structure, we check on Kripke structures
dynamically created for specific runs.

Theorem 1. A safe Petri net with transits & can be checked against a Flow-
CTL* formula ¥ in triple-exponential time in the size of /' and ¥. For a Flow-
CTL formula W', the model checking algorithm runs in double-exponential time
in the size of /' and ¥'.

Note that a single-exponential time algorithm for Flow-LTL is presented in [§].

7 Related Work

There is a large body of work on physical access control: Closest to our work are
access nets [12] which extend Petri nets with mandatory transitions to make peo-
ple leave a room at a policy update. Branching properties can be model checked
for a fixed number of people in the building. Fixing the number of people enables
explicit interaction between people. In logic-based access-control frameworks,
credentials are collected from distributed components to open policy enforce-
ment points according to the current policy [203]. Techniques from networking
can be applied to physical access control to detect redundancy, shadowing, and
spuriousness in policies [TT]. Our model prevents such situations by definition as
a door can be either open or closed for people with the same access rights.

A user study has been carried out to identify the limitations of physical access
control for real-life professionals [I]. Here, it was identified that policies are made
by multiple people which is a problem our approach of global control solves.
Types of access patterns are also studied [7UT3UT8]: Access policies according to
time schedules and emergencies, access policies for people without RFID cards,
and dependent access are of great importance. The first and the third problem
are solvable by our approach and the second one seems like an intrinsic problem
to physical access control. Policies for physical access control can be synthesized
if no policy updates are necessary [I§]. It is an interesting open question whether
policy updates can be included in the synthesis of access policies.

8 Conclusion

We present the first model checking approach for the verification of physical
access control with policy updates under fairness assumptions and with an un-
bounded number of people. Our approach builds on Petri nets with transits which
superimpose a transit relation onto the flow relation of Petri nets to differentiate
between data flow and control. We introduce Flow-CTL* to specify branching
properties on the data flow and linear properties on the control in Petri nets
with transits. We outline how Petri nets with transits can model physical access
control with policy updates and how Flow-CTL* can specify properties on the

16

B. Finkbeiner et al.

behavior before, during, and after updates including fairness and maximality.
To solve the model checking problem, we reduce the model checking problem of
Petri nets with transits against Flow-CTL* via automata constructions to the
model checking problem of Petri nets against LTL. In the future, we plan to eval-
uate our approach in a tool implementation and a corresponding case study. We
can build on our tool ADAMMC [9] for Petri nets with transits and Flow-LTL.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Bauer, L., Cranor, L.F., Reeder, R.W., Reiter, M.K., Vaniea, K.: Real life chal-
lenges in access-control management. In: Proc. of CHI (2009)

Bauer, L., Garriss, S., Reiter, M.K.: Distributed proving in access-control systems.
In: Proc. of S&P (2005)

Bauer, L., Garriss, S., Reiter, M.K.: Efficient proving for practical distributed
access-control systems. In: Proc. of ESORICS (2007)

Dax, C., Klaedtke, F.: Alternation elimination by complementation (extended ab-
stract). In: Proc. of LPAR (2008)

Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6) (1991)

Esparza, J., Heljanko, K.: Unfoldings — A Partial-Order Approach to Model Check-
ing. Springer (2008)

Fernédndez, E.B., Ballesteros, J., Desouza-Doucet, A.C., Larrondo-Petrie, M.M.:
Security patterns for physical access control systems. In: Proc. of Data and Appli-
cations Security XXI (2007)

Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Model checking
data flows in concurrent network updates. In: Proc. of ATVA (2019)

Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: AdamMC: A
model checker for Petri nets with transits against Flow-LTL. In: Proc. of CAV
(2020)

Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Model check-
ing branching properties on Petri nets with transits (full version). arXiv preprint
arXiv:2007.07235 (2020)

Fitzgerald, W.M., Turkmen, F., Foley, S.N., O’Sullivan, B.: Anomaly analysis for
physical access control security configuration. In: Proc. of CRiSIS (2012)
Frohardt, R., Chang, B.E., Sankaranarayanan, S.: Access nets: Modeling access to
physical spaces. In: Proc. of VMCAI (2011)

Geepalla, E., Bordbar, B., Du, X.: Spatio-temporal role based access control for
physical access control systems. In: Proc. of EST (2013)

Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume 1. Springer (1992)

Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2) (2000)

Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Com-
put. Sci. 32 (1984)

Reisig, W.: Petri Nets: An Introduction. Springer (1985)

Tsankov, P., Dashti, M.T., Basin, D.A.: Access control synthesis for physical
spaces. In: Proc. of CSF (2016)

Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska,
M., Borriello, G.: Building the internet of things using RFID: the RFID ecosystem
experience. IEEE Internet Comput. 13(3) (2009)

	Model Checking Branching Properties onPetri Nets with Transits

