177 research outputs found

    Understanding the excess COVID-19 burden among immigrants in Norway

    Get PDF
    Background: We aim to use intermarriage as a measure to disentangle the role of exposure to virus, susceptibility and care in differences in burden of COVID-19, by comparing rates of COVID-19 infections between immigrants married to a native and to another immigrant. Methods: Using data from the Norwegian emergency preparedness, register participants (N=2 312 836) were linked with their registered partner and categorized based on own and partner's country of birth. From logistic regressions, odds ratios (OR) of COVID-19 infection (15 June 2020-01 June 2021) and related hospitalization were calculated adjusted for age, sex, municipality, medical risk, occupation, household income, education and crowded housing. Results: Immigrants were at increased risk of COVID-19 and related hospitalization regardless of their partners being immigrant or not, but immigrants married to a Norwegian-born had lower risk than other immigrants. Compared with intramarried Norwegian-born, odds of COVID-19 infection was higher among persons in couples with one Norwegian-born and one immigrant from Europe/USA/Canada/Oceania (OR 1.42-1.46) or Africa/Asia/Latin-America (OR 1.91-2.01). Odds of infection among intramarried immigrants from Africa/Asia/Latin-America was 4.92. For hospitalization, the corresponding odds were slightly higher. Conclusion: Our study suggests that the excess burden of COVID-19 among immigrants is explained by differences in exposure and care rather than susceptibility. Keywords: COVID-19; Norway; hospitalization; immigrant; infection; register data.Understanding the excess COVID-19 burden among immigrants in NorwaypublishedVersio

    Maximum Host Survival at Intermediate Parasite Infection Intensities

    Get PDF
    BACKGROUND: Although parasitism has been acknowledged as an important selective force in the evolution of host life histories, studies of fitness effects of parasites in wild populations have yielded mixed results. One reason for this may be that most studies only test for a linear relationship between infection intensity and host fitness. If resistance to parasites is costly, however, fitness may be reduced both for hosts with low infection intensities (cost of resistance) and high infection intensities (cost of parasitism), such that individuals with intermediate infection intensities have highest fitness. Under this scenario one would expect a non-linear relationship between infection intensity and fitness. METHODOLOGY/PRINCIPAL FINDINGS: Using data from blue tits (Cyanistes caeruleus) in southern Sweden, we investigated the relationship between the intensity of infection of its blood parasite (Haemoproteus majoris) and host survival to the following winter. Presence and intensity of parasite infections were determined by microscopy and confirmed using PCR of a 480 bp section of the cytochrome-b-gene. While a linear model suggested no relationship between parasite intensity and survival (F = 0.01, p = 0.94), a non-linear model showed a significant negative quadratic effect (quadratic parasite intensity: F = 4.65, p = 0.032; linear parasite intensity F = 4.47, p = 0.035). Visualization using the cubic spline technique showed maximum survival at intermediate parasite intensities. CONCLUSIONS/SIGNIFICANCE: Our results indicate that failing to recognize the potential for a non-linear relationship between parasite infection intensity and host fitness may lead to the potentially erroneous conclusion that the parasite is harmless to its host. Here we show that high parasite intensities indeed reduced survival, but this effect was masked by reduced survival for birds heavily suppressing their parasite intensities. Reduced survival among hosts with low parasite intensities suggests costs of controlling parasite infections; however, the nature of such costs remains to be elucidated

    The role of immune-mediated apparent competition in genetically diverse malaria infections

    Get PDF
    Competitive interactions between coinfecting genotypes of the same pathogen can impose selection on virulence, but the direction of this selection depends on the mechanisms behind the interactions. Here, we investigate how host immune responses contribute to competition between clones in mixed infections of the rodent malaria parasite Plasmodium chabaudi. We studied single and mixed infections of a virulent and an avirulent clone and compared the extent of competition in immunodeficient and immunocompetent mice (nude mice and T cellndashreconstituted nude mice, respectively). In immunocompetent mice, the avirulent clone suffered more from competition than did the virulent clone. The competitive suppression of the avirulent clone was alleviated in immunodeficient mice. Moreover, the relative density of the avirulent clone in mixed infections was higher in immunodeficient than in immunocompetent mice. We conclude that immune-mediated interactions contributed to competitive suppression of the avirulent clone, although other mechanisms, presumably competition for resources such as red blood cells, must also be important. Because only the avirulent clone suffered from immune-mediated competition, this mechanism should contribute to selection for increased virulence in mixed infections in this host-parasite system. As far as we are aware, this is the first direct experimental evidence of immune-mediated apparent competition in any host-parasite system

    Effectiveness analysis of resistance and tolerance to infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tolerance and resistance provide animals with two distinct strategies to fight infectious pathogens and may exhibit different evolutionary dynamics. However, few studies have investigated these mechanisms in the case of animal diseases under commercial constraints.</p> <p>Methods</p> <p>The paper proposes a method to simultaneously describe (1) the dynamics of transmission of a contagious pathogen between animals, (2) the growth and death of the pathogen within infected hosts and (3) the effects on their performances. The effectiveness of increasing individual levels of tolerance and resistance is evaluated by the number of infected animals and the performance at the population level.</p> <p>Results</p> <p>The model is applied to a particular set of parameters and different combinations of values. Given these imputed values, it is shown that higher levels of individual tolerance should be more effective than increased levels of resistance in commercial populations. As a practical example, a method is proposed to measure levels of animal tolerance to bovine mastitis.</p> <p>Conclusions</p> <p>The model provides a general framework and some tools to maximize health and performances of a population under infection. Limits and assumptions of the model are clearly identified so it can be improved for different epidemiological settings.</p

    How do nutrient conditions and species identity influence the impact of mesograzers in eelgrass-epiphyte systems?

    Get PDF
    Coastal eutrophication is thought to cause excessive growth of epiphytes in eelgrass beds, threatening the health and survival of these ecologically and economically valuable ecosystems worldwide. Mesograzers, small crustacean and gastropod grazers, have the potential to prevent seagrass loss by grazing preferentially and efficiently on epiphytes. We tested the impact of three mesograzers on epiphyte biomass and eelgrass productivity under threefold enriched nutrient concentrations in experimental indoor mesocosm systems under summer conditions. We compared the results with earlier identical experiments that were performed under ambient nutrient supply. The isopod Idotea baltica, the periwinkle Littorina littorea, and the small gastropod Rissoa membranacea significantly reduced epiphyte load under high nutrient supply with Rissoa being the most efficient grazer, but only high densities of Littorina and Rissoa had a significant positive effect on eelgrass productivity. Although all mesograzers increased epiphyte ingestion with higher nutrient load, most likely as a functional response to the quantitatively and qualitatively better food supply, the promotion of eelgrass growth by Idotea and Rissoa was diminished compared to the study performed under ambient nutrient supply. Littorina maintained the level of its positive impact on eelgrass productivity regardless of nutrient concentrations

    Quantitative Analysis of Immune Response and Erythropoiesis during Rodent Malarial Infection

    Get PDF
    Malarial infection is associated with complex immune and erythropoietic responses in the host. A quantitative understanding of these processes is essential to help inform malaria therapy and for the design of effective vaccines. In this study, we use a statistical model-fitting approach to investigate the immune and erythropoietic responses in Plasmodium chabaudi infections of mice. Three mouse phenotypes (wildtype, T-cell-deficient nude mice, and nude mice reconstituted with T-cells taken from wildtype mice) were infected with one of two parasite clones (AS or AJ). Under a Bayesian framework, we use an adaptive population-based Markov chain Monte Carlo method and fit a set of dynamical models to observed data on parasite and red blood cell (RBC) densities. Model fits are compared using Bayes' factors and parameter estimates obtained. We consider three independent immune mechanisms: clearance of parasitised RBCs (pRBC), clearance of unparasitised RBCs (uRBC), and clearance of parasites that burst from RBCs (merozoites). Our results suggest that the immune response of wildtype mice is associated with less destruction of uRBCs, compared to the immune response of nude mice. There is a greater degree of synchronisation between pRBC and uRBC clearance than between either mechanism and merozoite clearance. In all three mouse phenotypes, control of the peak of parasite density is associated with pRBC clearance. In wildtype mice and AS-infected nude mice, control of the peak is also associated with uRBC clearance. Our results suggest that uRBC clearance, rather than RBC infection, is the major determinant of RBC dynamics from approximately day 12 post-innoculation. During the first 2–3 weeks of blood-stage infection, immune-mediated clearance of pRBCs and uRBCs appears to have a much stronger effect than immune-mediated merozoite clearance. Upregulation of erythropoiesis is dependent on mouse phenotype and is greater in wildtype and reconstitited mice. Our study highlights the informative power of statistically rigorous model-fitting techniques in elucidating biological systems

    Use of multi-trait and random regression models to identify genetic variation in tolerance to porcine reproductive and respiratory syndrome virus

    Get PDF
    Background: A host can adopt two response strategies to infection: resistance (reduce pathogen load) and tolerance (minimize impact of infection on performance). Both strategies may be under genetic control and could thus be targeted for genetic improvement. Although there is evidence that supports a genetic basis for resistance to porcine reproductive and respiratory syndrome (PRRS), it is not known whether pigs also differ genetically in tolerance. We determined to what extent pigs that have been shown to vary genetically in resistance to PRRS also exhibit genetic variation in tolerance. Multi-trait linear mixed models and random regression sire models were fitted to PRRS Host Genetics Consortium data from 1320 weaned pigs (offspring of 54 sires) that were experimentally infected with a virulent strain of PRRS virus to obtain genetic parameter estimates for resistance and tolerance. Resistance was defined as the inverse of within-host viral load (VL) from 0 to 21 (VL21) or 0 to 42 (VL42) days post-infection and tolerance as the slope of the reaction-norm of average daily gain (ADG21, ADG42) on VL21 or VL42. Results: Multi-trait analysis of ADG associated with either low or high VL was not indicative of genetic variation in tolerance. Similarly, random regression models for ADG21 and ADG42 with a tolerance slope fitted for each sire did not result in a better fit to the data than a model without genetic variation in tolerance. However, the distribution of data around average VL suggested possible confounding between level and slope estimates of the regression lines. Augmenting the data with simulated growth rates of non-infected half-sibs (ADG0) helped resolve this statistical confounding and indicated that genetic variation in tolerance to PRRS may exist if genetic correlations between ADG0 and ADG21 or ADG42 are low to moderate. Conclusions: Evidence for genetic variation in tolerance of pigs to PRRS was weak when based on data from infected piglets only. However, simulations indicated that genetic variance in tolerance may exist and could be detected if comparable data on uninfected relatives were available. In conclusion, of the two defense strategies, genetics of tolerance is more difficult to elucidate than genetics of resistance.</p

    Modeling Susceptibility versus Resistance in Allergic Airway Disease Reveals Regulation by Tec Kinase Itk

    Get PDF
    Murine models of allergic asthma have been used to understand the mechanisms of development and pathology in this disease. In addition, knockout mice have contributed significantly to our understanding of the roles of specific molecules and cytokines in these models. However, results can vary significantly depending on the mouse strain used in the model, and in particularly in understanding the effect of specific knockouts. For example, it can be equivocal as to whether specific gene knockouts affect the susceptibility of the mice to developing the disease, or lead to resistance. Here we used a house dust mite model of allergic airway inflammation to examine the response of two strains of mice (C57BL/6 and BALB/c) which differ in their responses in allergic airway inflammation. We demonstrate an algorithm that can facilitate the understanding of the behavior of these models with regards to susceptibility (to allergic airway inflammation) (Saai) or resistance (Raai) in this model. We verify that both C57BL/6 and BALB/c develop disease, but BALB/c mice have higher Saai for development. We then use this approach to show that the absence of the Tec family kinase Itk, which regulates the production of Th2 cytokines, leads to Raai in the C57BL/6 background, but decreases Saai on the BALB/c background. We suggest that the use of such approaches could clarify the behavior of various knockout mice in modeling allergic asthma

    Cystic Fibrosis-Niche Adaptation of Pseudomonas aeruginosa Reduces Virulence in Multiple Infection Hosts

    Get PDF
    The opportunistic pathogen Pseudomonas aeruginosa is able to thrive in diverse ecological niches and to cause serious human infection. P. aeruginosa environmental strains are producing various virulence factors that are required for establishing acute infections in several host organisms; however, the P. aeruginosa phenotypic variants favour long-term persistence in the cystic fibrosis (CF) airways. Whether P. aeruginosa strains, which have adapted to the CF-niche, have lost their competitive fitness in the other environment remains to be investigated. In this paper, three P. aeruginosa clonal lineages, including early strains isolated at the onset of infection, and late strains, isolated after several years of chronic lung infection from patients with CF, were analysed in multi-host model systems of acute infection. P. aeruginosa early isolates caused lethality in the three non-mammalian hosts, namely Caenorhabditis elegans, Galleria mellonella, and Drosophila melanogaster, while late adapted clonal isolates were attenuated in acute virulence. When two different mouse genetic background strains, namely C57Bl/6NCrl and Balb/cAnNCrl, were used as acute infection models, early P. aeruginosa CF isolates were lethal, while late isolates exhibited reduced or abolished acute virulence. Severe histopathological lesions, including high leukocytes recruitment and bacterial load, were detected in the lungs of mice infected with P. aeruginosa CF early isolates, while late isolates were progressively cleared. In addition, systemic bacterial spread and invasion of epithelial cells, which were detected for P. aeruginosa CF early strains, were not observed with late strains. Our findings indicate that niche-specific selection in P. aeruginosa reduced its ability to cause acute infections across a broad range of hosts while maintaining the capacity for chronic infection in the CF host
    corecore