5 research outputs found

    Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at <i>z</i> = 2 − 4 using JWST

    No full text
    Much of what is known of the chemical composition of the universe is based on emission line spectra from star forming galaxies. Emission-based inferences are, nevertheless, model-dependent and they are dominated by light from luminous star forming regions. An alternative and sensitive probe of the metallicity of galaxies is through absorption lines imprinted on the luminous afterglow spectra of long gamma ray bursts (GRBs) from neutral material within their host galaxy. We present results from a JWST/NIRSpec programme to investigate for the first time the relation between the metallicity of neutral gas probed in absorption by GRB afterglows and the metallicity of the star forming regions for the same host galaxy sample. Using an initial sample of eight GRB host galaxies at z = 2.1 − 4.7, we find a tight relation between absorption and emission line metallicities when using the recently proposed R^\hat{R} metallicity diagnostic (±0.2 dex). This agreement implies a relatively chemically-homogeneous multi-phase interstellar medium, and indicates that absorption and emission line probes can be directly compared. However, the relation is less clear when using other diagnostics, such as R23 and R3. We also find possible evidence of an elevated N/O ratio in the host galaxy of GRB 090323 at z = 4.7, consistent with what has been seen in other z > 4 galaxies. Ultimate confirmation of an enhanced N/O ratio and of the relation between absorption and emission line metallicities will require a more direct determination of the emission line metallicity via the detection of temperature-sensitive auroral lines in our GRB host galaxy sample.</p

    Correction to: Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at <i>z</i> = 2−4 using JWST

    No full text
    This is a correction to: P. Schady and others, Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at z = 2−4 using JWST, Monthly Notices of the Royal Astronomical Society, Volume 529, Issue 3, April 2024, Pages 2807–2831, https://doi.org/10.1093/mnras/stae677.We found a mistake in our abstract where we accidentally wrote that the host galaxy of GRB 090323 was at z = 4.7 whereas it is in fact at redshift z = 3.58 based on the NIRSpec emission line spectrum of the host galaxy. The redshift of this GRB host galaxy is correctly reported in the rest of the paper. We also found a bug in our code that produces the [O III] λ5007 surface brightness maps of the host galaxies of GRB 050820A and GRB 150403A (figs 1 and 2 of the original paper) that caused the labelled physical pixel scale to be too small by a factor of ∼1.4. This error only affected the axes shown in the figures and has no implications for the rest of the paper. The corresponding pixel-to-kpc conversions have now been corrected and the updated maps are shown in Figs 1 and 2.</p

    The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A

    No full text
    International audienceWe present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. Observations obtained with NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron) 12 days after the burst are the first mid-IR spectroscopy performed for a GRB. Assuming the underlying slope is that of a single power-law, we obtain β≈0.35\beta \approx 0.35 and AV=4.9A_V = 4.9, in excess of the notional Galactic value. This is suggestive of extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same branch of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal declines would only match for a post jet break, ISM medium and electron index with p<2p<2. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests the SNe is either substantially fainter or bluer than SN~1998bw. Our {\em HST} observations also reveal a disc-like host galaxy, viewed close to edge-on that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment

    Time domain astronomy with the THESEUS satellite

    Get PDF
    THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simultaneous multiwavelegth studies. Here we present the THESEUS capabilities for studying the time variability of different classes of sources in parallel to, and without affecting, the gamma-ray bursts hunt

    Unveiling the enigma of ATLAS17aeu

    Full text link
    Aims. The unusual transient ATLAS17aeu was serendipitously detected within the sky localisation of the gravitational wave trigger GW 170104. The importance of a possible association with gravitational waves coming from a binary black hole merger led to an extensive follow-up campaign, with the aim of assessing a possible connection with GW 170104. Methods. With several telescopes, we carried out both photometric and spectroscopic observations of ATLAS17aeu, for several epochs, between ∼3 and ∼230 days after the first detection. Results. We studied in detail the temporal and spectroscopic properties of ATLAS17aeu and its host galaxy. Although at low significance and not conclusive, we found similarities to the spectral features of a broad-line supernova superposed onto an otherwise typical long-GRB afterglow. Based on analysis of the optical light curve, spectrum, and host galaxy spectral energy distribution, we conclude that the redshift of the source is probably z ' 0.5 ± 0.2. Conclusions. While the redshift range we have determined is marginally compatible with that of the gravitational wave event, the presence of a supernova component and the consistency of this transient with the Ep–Eiso correlation support the conclusion that ATLAS17aeu was associated with the long gamma-ray burst GRB 170105A. This rules out the association of the GRB 170105A/ATLAS17aeu transient with the gravitational wave event GW 170104, which was due to a binary black hole merger
    corecore