3,346 research outputs found
Environmental and genetic influences on neurocognitive development: the importance of multiple methodologies and time-dependent intervention
Genetic mutations and environmental factors dynamically influence gene expression and developmental trajectories at the neural, cognitive, and behavioral levels. The examples in this article cover different periods of neurocognitive development—early childhood, adolescence, and adulthood—and focus on studies in which researchers have used a variety of methodologies to illustrate the early effects of socioeconomic status and stress on brain function, as well as how allelic differences explain why some individuals respond to intervention and others do not. These studies highlight how similar behaviors can be driven by different underlying neural processes and show how a neurocomputational model of early development can account for neurodevelopmental syndromes, such as autism spectrum disorders, with novel implications for intervention. Finally, these studies illustrate the importance of the timing of environmental and genetic factors on development, consistent with our view that phenotypes are emergent, not predetermined
Relationship between downwelling surface shortwave radiative fluxes and sea surface temperature over the tropical Pacific: AMIP II models versus satellite estimates
Incident shortwave radiation at the Earth's surface is the driving force of the climate system. Understanding the relationship between this forcing and the sea surface temperature, in particular, over the tropical Pacific Ocean is a topic of great interest because of possible climatic implications. The objective of this study is to investigate the relationship between downwelling shortwave radiative fluxes and sea surface temperature by using available data on radiative fluxes. We assess first the shortwave radiation from three General Circulation Models that participated in the second phase of the Atmospheric Model Intercomparison Project (AMIP II) against estimates of such fluxes from satellites. The shortwave radiation estimated from the satellite is based on observations from the International Satellite Cloud Climatology Project D1 data and the University of Maryland Shortwave Radiation Budget model (UMD/SRB). Model and satellite estimates of surface radiative fluxes are found to be in best agreement in the central equatorial Pacific, according to mean climatology and spatial correlations. We apply a Canonical Correlation Analysis to determine the interrelated areas where shortwave fluxes and sea surface temperature are most sensitive to climate forcing. Model simulations and satellite estimates of shortwave fluxes both capture well the interannual signal of El Niño-like variability.  The tendency for an increase in shortwave radiation from the UMD/SRB model is not captured by the AMIP II models
Classifying the Arithmetical Complexity of Teaching Models
This paper classifies the complexity of various teaching models by their
position in the arithmetical hierarchy. In particular, we determine the
arithmetical complexity of the index sets of the following classes: (1) the
class of uniformly r.e. families with finite teaching dimension, and (2) the
class of uniformly r.e. families with finite positive recursive teaching
dimension witnessed by a uniformly r.e. teaching sequence. We also derive the
arithmetical complexity of several other decision problems in teaching, such as
the problem of deciding, given an effective coding  of all uniformly r.e. families, any  such that
, any  and , whether or not the
teaching dimension of  with respect to  is upper bounded
by .Comment: 15 pages in International Conference on Algorithmic Learning Theory,
  201
The use of ICT in the assessment of modern languages: the English context and European viewpoints
The ever increasing explosion of highly attractive multimedia resources on offer has boosted the use of information and communication technology (ICT) in the teaching and learning of modern languages. The use of ICT to assess languages is less frequent, however, although online testing is starting to develop. This paper examines the national context for the assessment of modern foreign language proficiency in England, outlines the kinds of assessment currently available and the development of electronic forms of assessment and compares the above with the survey results of a European Union (EU) funded project on current good practice in online assessment of languages in other European countries. The findings indicate that speaking is inadequately served by online testing as tests currently focus primarily on receptive language skills. The implications for future successful online testing include the incorporation of interactive skills and effective formative feedback
The evolution of representation in simple cognitive networks
Representations are internal models of the environment that can provide
guidance to a behaving agent, even in the absence of sensory information. It is
not clear how representations are developed and whether or not they are
necessary or even essential for intelligent behavior. We argue here that the
ability to represent relevant features of the environment is the expected
consequence of an adaptive process, give a formal definition of representation
based on information theory, and quantify it with a measure R. To measure how R
changes over time, we evolve two types of networks---an artificial neural
network and a network of hidden Markov gates---to solve a categorization task
using a genetic algorithm. We find that the capacity to represent increases
during evolutionary adaptation, and that agents form representations of their
environment during their lifetime. This ability allows the agents to act on
sensorial inputs in the context of their acquired representations and enables
complex and context-dependent behavior. We examine which concepts (features of
the environment) our networks are representing, how the representations are
logically encoded in the networks, and how they form as an agent behaves to
solve a task. We conclude that R should be able to quantify the representations
within any cognitive system, and should be predictive of an agent's long-term
adaptive success.Comment: 36 pages, 10 figures, one Tabl
Can a connectionist model explain the processing of regularly and irregularly inflected words in German as L1 and L2?
The connectionist model is a prevailing model of the structure and functioning of the cognitive system of the processing of morphology. According to this model, the morphology of regularly and irregularly inflected words (e.g., verb participles and noun plurals) is processed in the same cognitive network. A validation of the connectionist model of the processing of morphology in German as L2 has yet to be achieved. To investigate L2-specific aspects, we compared a group of L1 speakers of German with speakers of German as L2. L2 and L1 speakers of German were assigned to their respective group by their reaction times in picture naming prior to the central task. The reaction times in the lexical decision task of verb participles and noun plurals were largely consistent with the assumption of the connectionist model. Interestingly, speakers of German as L2 showed a specific advantage for irregular compared with regular verb participles
Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events
In this paper we present a fresh look at the problem of summarizing evolving
events from multiple sources. After a discussion concerning the nature of
evolving events we introduce a distinction between linearly and non-linearly
evolving events. We present then a general methodology for the automatic
creation of summaries from evolving events. At its heart lie the notions of
Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the
identification of similarities and differences between sources, from a
synchronical and diachronical perspective. SDRs do not connect documents or
textual elements found therein, but structures one might call messages.
Applying this methodology will yield a set of messages and relations, SDRs,
connecting them, that is a graph which we call grid. We will show how such a
grid can be considered as the starting point of a Natural Language Generation
System. The methodology is evaluated in two case-studies, one for linearly
evolving events (descriptions of football matches) and another one for
non-linearly evolving events (terrorist incidents involving hostages). In both
cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent
  Information System
The biological origin of linguistic diversity
In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language
The Emerging Scholarly Brain
It is now a commonplace observation that human society is becoming a coherent
super-organism, and that the information infrastructure forms its emerging
brain. Perhaps, as the underlying technologies are likely to become billions of
times more powerful than those we have today, we could say that we are now
building the lizard brain for the future organism.Comment: to appear in Future Professional Communication in Astronomy-II
  (FPCA-II) editors A. Heck and A. Accomazz
- …
