202 research outputs found

    Strain localization in polycrystalline material with second phase particles: Numerical modeling with application to ice mixtures

    Get PDF
    We use a centimeter-scale 2-D numerical model to investigate the effect of the presence of a second phase with various volume percent, shape, and orientation on strain localization in a viscoelastic matrix. In addition, the evolution of bulk rheological behavior of aggregates during uniaxial compression is analyzed. The rheological effect of dynamic recrystallization processes in the matrix is reproduced by viscous strain softening. We show that the presence of hard particles strengthens the aggregate, but also causes strain localization and the formation of ductile shear zones in the matrix. The presence of soft particles weakens the aggregate, while strain localizes within the particles and matrix between particles. The shape and the orientation of second phases control the orientation, geometry, and connectivity of ductile shear zones. We propose an analytical scaling method that translates the bulk stress measurements of our 2-D simulations to 3-D experiments. Comparing our model to the laboratory uniaxial compression experiments on ice cylinders with hard second phases allows the analysis of transient and steady-state strain distribution in ice matrix, and strain partitioning between ice and second phases through empirical calibration of viscous softening parameters. We find that the ice matrix in two-phase aggregates accommodates more strain than the applied bulk strain, while at faster strain rates some of the load is transferred into hard particles. Our study illustrates that dynamic recrystallization processes in the matrix are markedly influenced by the presence of a second phase

    Deformation-resembling microstructure created by fluid-mediated dissolution-precipitation reactions

    Get PDF
    Deformation microstructures are widely used for reconstructing tectono-metamorphic events recorded in rocks. In crustal settings deformation is often accompanied and/or succeeded by fluid infiltration and dissolution–precipitation reactions. However, the microstructural consequences of dissolution–precipitation in minerals have not been investigated experimentally. Here we conducted experiments where KBr crystals were reacted with a saturated KCl-H2O fluid. The results show that reaction products, formed in the absence of deformation, inherit the general crystallographic orientation from their parents, but also display a development of new microstructures that are typical in deformed minerals, such as apparent bending of crystal lattices and new subgrain domains, separated by low-angle and, in some cases, high-angle boundaries. Our work suggests that fluid-mediated dissolution–precipitation reactions can lead to a development of potentially misleading microstructures. We propose a set of criteria that may help in distinguishing such microstructures from the ones that are created by crystal-plastic deformation

    Patterns of strain localization in heterogeneous, polycrystalline rocks – a numerical perspective

    Get PDF
    The spatial and temporal patterns of strain localization in materials with pre-existing heterogeneities are investigated via a series of two-dimensional numerical models. Models include (i) a dynamic feedback process, to simulate rheological weakening in response to the transition from non-linear flow (dislocation creep) to linear flow (diffusion creep/grain boundary sliding), and (ii) a time dependent strengthening process, counteracting the weakening process. Different load bearing framework geometries with 20% weak component are used to evaluate the impact of geometry on the strength of the material and its ability to localize strain into an interconnected weak layer (IWL). Our results highlight that during simple shear, if dynamic weakening with or without strengthening feedbacks is present, strain is quickly localized into an IWL, where an increasing proportion of weak material increases the interconnections between the IWLs, thereby increasing the anastomosing character of the shear zones. We establish that not only bulk strain localization patterns but also their temporal patterns are sensitive to the dominance of the weakening or strengthening process. Consequently, shear zones are dynamic in time and space within a single deformation event. Hence, the pattern of finite strain can be an incomplete representation of the evolution of a shear zone network

    Fracturing and Porosity Channeling in Fluid Overpressure Zones in the Shallow Earth’s Crust

    Get PDF
    At the time of energy transition, it is important to be able to predict the effects of fluid overpressures in different geological scenarios as these can lead to the development of hydrofractures and dilating high-porosity zones. In order to develop an understanding of the complexity of the resulting effective stress fields, fracture and failure patterns, and potential fluid drainage, we study the process with a dynamic hydromechanical numerical model. The model simulates the evolution of fluid pressure buildup, fracturing, and the dynamic interaction between solid and fluid. Three different scenarios are explored: fluid pressure buildup in a sedimentary basin, in a vertical zone, and in a horizontal layer that may be partly offset by a fault. Our results show that the geometry of the area where fluid pressure is successively increased has a first-order control on the developing pattern of porosity changes, on fracturing, and on the absolute fluid pressures that sustained without failure. If the fluid overpressure develops in the whole model, the effective differential and mean stress approach zero and the vertical and horizontal effective principal stresses flip in orientation. The resulting fractures develop under high lithostatic fluid overpressure and are aligned semihorizontally, and consequently, a hydraulic breccia forms. If the area of high fluid pressure buildup is confined in a vertical zone, the effective mean stress decreases while the differential stress remains almost constant and failure takes place in extensional and shear modes at a much lower fluid overpressure. A horizontal fluid pressurized layer that is offset shows a complex system of effective stress evolution with the layer fracturing initially at the location of the offset followed by hydraulic breccia development within the layer. All simulations show a phase transition in the porosity where an initially random porosity reduces its symmetry and forms a static porosity wave with an internal dilating zone and the presence of dynamic porosity channels within this zone. Our results show that patterns of fractures, hence fluid release, that form due to high fluid overpressures can only be successfully predicted if the geometry of the geological system is known, including the fluid overpressure source and the position of seals and faults that offset source layers and seals

    Trace element homogeneity from micron- to atomic scale: Implication for the suitability of the zircon GJ-1 as a trace element reference material

    Get PDF
    The quality of a chemical reference material relies on the fact that the composition of the material is homogeneous across all scales. A series of different techniques have been used to evaluate the trace element homogeneity of the GJ-1 reference zircon from the micron- to atomic scale. Cathodoluminescence imaging was conducted along with quantitative crystallographic orientation analysis and trace element analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The nanometre-scale homogeneity was evaluated by analysing five mineral tips using atom probe tomography, which provides atomic scale three dimensional chemical reconstructions with unprecedented spatial resolution. Results show that the GJ-1 reference zircon is homogeneous at all scales, both structurally and chemically. Crystallographic orientation data confirms that this gem quality zircon has no detectable internal crystallographic orientation changes such as crystal-plastic deformation features or cracks. No mineral inclusions were found. Atom probe tomography shows that there is a lack of any chemical clustering or other modes of spatially defined elemental accumulation or depletion for the most abundant trace elements such as Y, Yb and Hf. This finding is supported by LA-ICPMS data revealing homogeneity within the analytical precision. Trace elements of significant abundance include P, Yb, Y, U and Hf, with contents of 30 ± 6, 65 ± 2, 238 ± 5, 284 ± 14 and 6681 ± 57 ppm, respectively. Hence, the GJ-1 zircon used as a reference zircon for UPb and Hf-isotopic studies is also a suitable zircon reference material for trace element analyses

    Hornblendite delineates zones of mass transfer through the lower crust

    Get PDF
    Geochemical signatures throughout the layered Earth require significant mass transfer through the lower crust, yet geological pathways are under-recognized. Elongate bodies of basic to ultrabasic rocks are ubiquitous in exposures of the lower crust. Ultrabasic hornblendite bodies hosted within granulite facies gabbroic gneiss of the Pembroke Valley, Fiordland, New Zealand, are typical occurrences usually reported as igneous cumulate hornblendite. Their igneous features contrast with the metamorphic character of their host gabbroic gneiss. Both rock types have a common parent; field relationships are consistent with modification of host gabbroic gneiss into hornblendite. This precludes any interpretation involving cumulate processes in forming the hornblendite; these bodies are imposter cumulates. Instead, replacement of the host gabbroic gneiss formed hornblendite as a result of channeled high melt flux through the lower crust. High melt/rock ratios and disequilibrium between the migrating magma (granodiorite) and its host gabbroic gneiss induced dissolution (grain-scale magmatic assimilation) of gneiss and crystallization of mainly hornblende from the migrating magma. The extent of this reaction-replacement mechanism indicates that such hornblendite bodies delineate significant melt conduits. Accordingly, many of the ubiquitous basic to ultrabasic elongate bodies of the lower crust likely map the ‘missing’ mass transfer zones

    Grain‐scale dependency of metamorphic reaction on crystal plastic strain

    Get PDF
    The Breaksea Orthogneiss in Fiordland, New Zealand preserves water‐poor intermediate and mafic igneous rocks that were partially recrystallized to omphacite granulite and eclogite, respectively, at P ≈ 1.8 GPa and T ≈ 850°C. Metamorphic reaction consumed plagioclase and produced grossular‐rich garnet, jadeite‐rich omphacite, clinozoisite and kyanite. The extent of metamorphic reaction, identified by major and trace element composition and microstructural features, is patchy on the grain and outcrop scale. Domains of re‐equilibration coincide with areas that exhibit higher strain suggesting a causal link between crystal plastic strain and metamorphic reaction. Quantitative orientation analysis (EBSD) identifies gradual and stepped changes in crystal lattice orientations of igneous phenocrysts that are surrounded by homophase areas of neoblasts, characterized by high grain boundary to volume ratios and little to no internal lattice distortion. The narrow, peripheral compositional modification of less deformed garnet and omphacite phenocrysts reflects limited lattice diffusion in areas that lacked three‐dimensional networks of interconnected low‐angle boundaries. Low‐angle boundaries acted as elemental pathways (pipe diffusion) that enhanced in‐grain element diffusion. The scale of pipe diffusion is pronounced in garnet relatively to clinopyroxene. Strain‐induced mineral transformation largely controlled the extent of high‐T metamorphic reaction under relatively fluid‐poor conditions

    Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth

    Get PDF
    When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are common accessory minerals in meteorites; consequently, meteorites are proposed to be a main source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypophosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emergence of terrestrial life indefinitely

    Ice fabrics in two-dimensional flows: beyond pure and simple shear

    Get PDF
    Ice fabrics – the distribution of crystal orientations in a polycrystal – are key for understanding and predicting ice flow dynamics. Despite their importance, the characteristics and evolution of fabrics produced outside of the deformation regimes of pure and simple shear flow has largely been neglected, yet they are a common occurrence within ice sheets. Here, we use a recently developed numerical model (SpecCAF) to classify all fabrics produced over a continuous spectrum of incompressible two-dimensional deformation regimes and temperatures. The model has been shown to accurately predict ice fabrics produced in experiments, where the ice has been deformed in either uniaxial compression or simple shear. Here we use the model to reveal fabrics produced in regimes intermediate to pure and simple shear, as well as those that are more rotational than simple shear. We find that intermediate deformation regimes between pure and simple shear result in a smooth transition between a fabric characterised by a girdle and a secondary cluster pattern. Highly rotational deformation regimes are revealed to produce a weak girdle fabric. Furthermore, we provide regime diagrams to help constrain deformation conditions of measured ice fabrics. We also obtain predictions for the strain scales over which fabric evolution takes place at any given temperature. The use of our model in large-scale ice flow models and for interpreting fabrics observed in ice cores and seismic anisotropy provides new tools supporting the community in predicting and interpreting ice flow in a changing climate
    corecore