85 research outputs found

    Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli

    Get PDF
    Combination of an origin repair mutagenesis system with a new mutS host strain increased the efficiency of mutagenesis from 46% to 75% mutant clones. Overexpression with the T7 expression system afforded large quantities of proteins from mutant strains. A series of E. coli BE host strains devoid of major outer membrane proteins was constructed, facilitating the purification of mutant porins to homogeneity. This allowed preparation of 149 porin mutants in E. coli used in detailed explorations of the structure and function of this membrane protein to high resolutio

    Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer

    No full text
    In the biosphere, the largest biological laboratory, increased anthropogenic activities have led microbes to evolve and adapt to the changes occurring in the environment. Compounds, specifically xenobiotics, released due to such activities persist in nature and undergo bio-magnification in the food web. Some of these compounds act as potent endocrine disrupters, mutagens or carcinogens, and therefore their removal from the environment is essential. Due to their persistence, microbial communities have evolved to metabolize them partially or completely. Diverse biochemical pathways have evolved or been assembled by exchange of genetic material (horizontal gene transfer) through various mobile genetic elements like conjugative and non-conjugative plasmids, transposons, phages and prophages, genomic islands and integrative conjugative elements. These elements provide an unlimited opportunity for genetic material to be exchanged across various genera, thus accelerating the evolution of a new xenobiotic degrading phenotype. In this article, we illustrate examples of the assembly of metabolic pathways involved in the degradation of naphthalene and its derivative, Carbaryl, which are speculated to have evolved or adapted through the above-mentioned processes

    1-Naphthol 2-hydroxylase from Pseudomonas sp. strain C6: purification, characterization and chemical modification studies

    No full text
    1-Naphthol 2-hydroxylase (1-NH) which catalyzes the conversion of 1-naphthol to 1,2-dihydroxynaphthalene was purified to homogeneity from carbaryl-degrading Pseudomonas sp. strain C6. The enzyme was found to be a homodimer with subunit molecular weight of 66 kDa. UV, visible and fluorescence spectral properties, identification of flavin moiety by HPLC as FAD, and reconstitution of apoenzyme by FAD suggest that enzyme is FAD-dependent. 1-NH accepts electron from NADH as well as NADPH. Besides 1-naphthol (K (m), 9.1 mu M), the enzyme also accepts 5-amino 1-naphthol (K (m), 6.4 mu M) and 4-chloro 1-naphthol (K (m), 2.3 mu M) as substrates. Enzyme showed substrate inhibition phenomenon at high concentration of 1-naphthol (K (i), 283 mu M). Stoichiometric consumption of oxygen and NADH, and biochemical properties suggest that 1-NH belongs to FAD containing external flavomonooxygenase group of oxido-reductase class of enzymes. Based on biochemical and kinetic properties, 1-NH from Pseudomonas sp. strain C6 appears to be different than that reported earlier from Pseudomonas sp. strain C4. Chemical modification and protection by 1-naphthol and NADH suggest that His, Arg, Cys, Tyr and Trp are at or near the active site of 1-NH

    Bypassing Isophthalate Inhibition by Modulating Glutamate Dehydrogenase (GDH): Purification and Kinetic Characterization of NADP-GDHs from Isophthalate-Degrading Pseudomonas aeruginosa Strain PP4 and Acinetobacter lwoffii Strain ISP4▿ †

    No full text
    Pseudomonas aeruginosa strain PP4 and Acinetobacter lwoffii strain ISP4 metabolize isophthalate as a sole source of carbon and energy. Isophthalate is known to be a competitive inhibitor of glutamate dehydrogenase (GDH), which is involved in C and N metabolism. Strain PP4 showed carbon source-dependent modulation of NADP-GDH; GDHI was produced when cells were grown on isophthalate, while GDHII was produced when cells were grown on glucose. Strain ISP4 produced a single form of NADP-GDH, GDHP, when it was grown on either isophthalate or rich medium (2YT). All of the forms of GDH were purified to homogeneity and characterized. GDHI and GDHII were found to be homotetramers, while GDHP was found to be a homohexamer. GDHII was more sensitive to inhibition by isophthalate (2.5- and 5.5-fold more sensitive for amination and deamination reactions, respectively) than GDHI. Differences in the N-terminal sequences and electrophoretic mobilities in an activity-staining gel confirmed the presence of two forms of GDH, GDHI and GDHII, in strain PP4. In strain ISP4, irrespective of the carbon source, the GDHP produced showed similar levels of inhibition with isophthalate. However, the specific activity of GDHP from isophthalate-grown cells was 2.5- to 3-fold higher than that of GDHP from 2YT-grown cells. Identical N-terminal sequences and electrophoretic mobilities in the activity-staining gel suggested the presence of a single form of GDHP in strain ISP4. These results demonstrate the ability of organisms to modulate GDH either by producing an entirely different form or by increasing the level of the enzyme, thus enabling strains to utilize isophthalate more efficiently as a sole source of carbon and energy

    Brownian dynamics simulation of ion flow through porin channels

    No full text
    Bacterial porins, which allow the passage of solutes across the outer bacterial membrane, are structurally well characterized. They therefore lend themselves to detailed studies of the determinants of ion flow through transmembraneous channels. In a comparative study, we have performed Brownian dynamics simulations to obtain statistically significant transfer efficiencies for cations and anions through matrix porin OmpF, osmoporin OmpK36, phosphoporin PhoE and two OmpF charge mutants.The simulations show that the electrostatic potential at the highly charged channel constriction serves to enhance ion permeability of either cations or anions, dependent on the type of porin. At the same time translocation of counterions is not severely impeded. At the constriction, cations and anions follow distinct trajectories, due to the segregation of basic and acidic protein residues.Simulated ion selectivity and relative conductance agree well with experimental values, and are dependent crucially on the charge constellation at the pore constriction. The experimentally observed decrease in ion selectivity and single channel conductance with increasing ionic strength is well reproduced and can be attributed to electrostatic shielding of the pore lining

    0-phthalic acid, a dead-end product in one of the two pathways of phenanthrene degradation in Pseudomonas sp strain PP2

    No full text
    Phenanthrene is degraded via either o-phthalic acid or 1, 2-dihydroxynaphthalene in bacteria. A soil isolate Pseudomonas sp. strain PP2 degrades phenanthrene as the sole source of carbon, but failed to utilize naphthalene [Prabhu and Phale (2003) Appl Microbiol Biotechnol 61:342-351]. Analysis of the phenanthrene-grown culture spent media of this strain by gas chromatography-mass spectrometry (GC-MS) showed accumulation of o-phthalic acid. The cell-free extract prepared from this strain showed activity of 1-hydroxy-2-naphthoic acid dioxygenase (1-H-2-NADO). The extract showed conversion of 1-hydroxy-2-naphthoic acid and 2-carboxybenzaldehyde to o-phthalic acid, as analyzed by thin layer chromatography and GC-MS. However, it failed to grow or respire on o-phthalic acid. These results suggest that besides 1, 2-dihydroxynaphthalene pathway, the strain has a truncated o-phthalic acid pathway for phenanthrene metabolism and excretes o-phthalic acid as a dead-end product, indicating the co-existence of two pathways. 1-H-2-NADO, the key enzyme of o-phthalic acid pathway is inducible, has pH optima of 7.5, does not require external addition of Fe(II) as a co-factor and is completely inhibited by 1,10-phenanthroline. Absence of product formation under anaerobic condition and stoichiometric consumption of 0.82 moles Of O-2 per mole of product formed confirmed the dioxygenase nature of the enzyme
    corecore