996 research outputs found

    Entropy Change through Rayleigh-B\'enard Convective Transition with Rigid Boundaries

    Full text link
    The previous investigation on Rayleigh-B\'enard convection of a dilute classical gas [T. Kita: J. Phys. Soc. Jpn. {\bf 75} (2006) 124005] is extended to calculate entropy change of the convective transition with the rigid boundaries. We obtain results qualitatively similar to those of the stress-free boundaries. Above the critical Rayleigh number, the roll convection is realized among possible steady states with periodic structures, carrying the highest entropy as a function of macroscopic mechanical variables.Comment: 5 pages, 4 figure

    Whirling Hexagons and Defect Chaos in Hexagonal Non-Boussinesq Convection

    Full text link
    We study hexagon patterns in non-Boussinesq convection of a thin rotating layer of water. For realistic parameters and boundary conditions we identify various linear instabilities of the pattern. We focus on the dynamics arising from an oscillatory side-band instability that leads to a spatially disordered chaotic state characterized by oscillating (whirling) hexagons. Using triangulation we obtain the distribution functions for the number of pentagonal and heptagonal convection cells. In contrast to the results found for defect chaos in the complex Ginzburg-Landau equation and in inclined-layer convection, the distribution functions can show deviations from a squared Poisson distribution that suggest non-trivial correlations between the defects.Comment: 4 mpg-movies are available at http://www.esam.northwestern.edu/~riecke/lit/lit.html submitted to New J. Physic

    Flexoelectricity and pattern formation in nematic liquid crystals

    Full text link
    We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency ω\omega), which leads to stripe patterns (flexodomains) in the plane of the layer. This equilibrium transition is governed by the free energy of the nematic which describes the elasticity with respects to the orientational degrees of freedom supplemented by an electric part. Surprisingly the limit ω0\omega \to 0 is highly singular. In distinct contrast to the dc-case, where the patterns are stationary and time-independent, they appear at finite, small ω\omega periodically in time as sudden bursts. Flexodomains are in competition with the intensively studied electro-hydrodynamic instability in nematics, which presents a non-equilibrium dissipative transition. It will be demonstrated that ω\omega is a very convenient control parameter to tune between flexodomains and convection patterns, which are clearly distinguished by the orientation of their stripes

    Dynamics and Selection of Giant Spirals in Rayleigh-Benard Convection

    Full text link
    For Rayleigh-Benard convection of a fluid with Prandtl number \sigma \approx 1, we report experimental and theoretical results on a pattern selection mechanism for cell-filling, giant, rotating spirals. We show that the pattern selection in a certain limit can be explained quantitatively by a phase-diffusion mechanism. This mechanism for pattern selection is very different from that for spirals in excitable media

    Graduating with a Science Major: The Roles of First-Year Science Interests and Educational Aspirations

    Get PDF
    The purpose of this longitudinal study was to determine whether the degree of science interests and educational aspirations in students’ first year of university would significantly differentiate those students who graduated with a science major from those students who did not graduate with a science major. Moreover, the authors expected that educational aspirations would moderate the relation between science interests and graduating with/without a science major. First-year college students in introductory science courses were surveyed in their first semester and then again upon graduation. These 166 students’ science interests and educational aspirations were assessed at Time 1; their educational major was assessed upon graduation. The findings supported both hypotheses. Science interests and educational aspirations significantly differentiated whether or not students graduated with science majors. Moreover, the interaction of science interests and educational aspirations also significantly differentiated whether or not students graduated with a science major. In short, students who graduated with science majors, compared to their counterparts who graduated with nonscience majors, had significantly higher interests only when they also had higher educational aspirations
    corecore