T_{2}
 Technologiezentrum für Oberflächentechnik Rheinbreitbach GmbH

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

MMAUF

Sz. Kolozsvária) ${ }^{*}$, P. Pesch ${ }^{\text {a) }}$, C. Ziebert ${ }^{\text {b }}$, S. Ulrich ${ }^{\text {b) }}$
a) TZO - Technologiezentrum für Oberflächentechnik Rheinbreitbach GmbH, Maarweg 30, 53619 Rheinbreitbach, Germany
b) Forschungszentrum Karlsruhe, Institut für Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

* Corresponding author, Tel.: +49 (0)2224 9421 13; Fax: +49 (0)2224 9421 20, E-mail adress: kolozsvari@tzo-gmbh.de

Deposition and characterization of hard coatings in the material system V-AI-N by reactive magnetron-sputtering

Aim of the work: deposition of new coatings in the material system V-AI-N on industrial plants, to achieve metastable nanostructured hard layers through systematical variation of deposition parameters as power density, plasma pressure and variation of the partial pressure of process-gases (Ar: N_{2})

General approach:

- binary coatings: VN, VC (planned), AIN, (AIC)
- ternary coatings VAIN, VCN, VAIC, AICN
- V-Al-C-N-coatings

Realisation: dc magnetron-sputter industrial deposition system (CemeCon CC800/8) with possibility to process in rf mode

Flexible controlling: variation of many parameters in each process step possible

First results in dc-magnetron-sputtered binary VN-, AIN- and VAIN-coatings:

VN-coatings:

VAIN-coatings:

Results and Outlook:

Results VN:	Results AIN:	Results VAIN:
- VN-coating nanocrystalline	- difficult processing by both dc	- VAIN-coating nanocrystalline
- average crystallite size $\sim 6 \mathrm{~nm}$	and rf magnetron sputtering	- average crystallite size $\sim 4 \mathrm{~nm}$
- near-stoichiometric	- average crystallite size $\sim 3 \mathrm{~nm}$	- near-stoichiometric
- friction coefficient ~ 0.7	- w-AIN-structure, near-amorph	- friction coefficient ~ 0.7
- friction coefficient ~ 0.7 - variation of $\mathrm{Ar}_{2} \mathrm{~N}_{2}$-ratio has no influence on friction coefficient		- probably mixture of VN and AIN
		- mechanical properties

First experiments in the material system V-Al-C-N show:

- C-content in V-layers has an impact on friction coefficient (adjustable from 0.2-0.5)
- combination of hard, metastable materials with a low friction coefficient on an industrial machine feasable - first steps to understand the quaternary V-AI-C-N system by studying binary VN-, AIN-, VC- and ternary VAIN-systems are done
- next steps: fabrication of VC-, VAIC- and AICN-layer-systems

