

Technologiezentrum für Oberflächentechnik Rheinbreitbach GmbH

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Symposium B Poster Session

Thursday 30th, April 2009

Sz. Kolozsvári^{a)*}, P. Pesch^{a)}, C. Ziebert^{b)}, M. Stueber^{b)}, S. Ulrich^{b)} a) TZO - Technologiezentrum für Oberflächentechnik Rheinbreitbach GmbH, Maarweg 30, 53619 Rheinbreitbach, Germany b) Forschungszentrum Karlsruhe, Institut für Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany

* Corresponding author, Tel.: +49 (0)2224 94 21 13; Fax: +49 (0)2224 94 21 20, E-mail adress: kolozsvari@tzo-gmbh.de

<u>Characterization of Binary, Ternary and Quaternary Hard Coatings in the Material System</u> V-AI-C-N Produced by Industrial Scale Reactive Magnetron Sputter Deposition

Aim of the work: deposition of new coatings in the material system V-AI-C-N on industrial plants, to achieve metastable nanostructured hard layers through systematical variation of deposition parameters as power density, plasma pressure and variation of the partial pressure of process-gases (Ar:N₂ and/or CH₄)

<u>Realisation</u>: dc magnetron-sputter industrial deposition system (CemeCon CC800/8) with rf processing mode (for 2 of 4 cathodes)

Results in dc-magnetron-sputtered binary VN-, VC-, ternary VAIN- and quaternary VAICN-coatings:

VN-coatings:

VC-coatings were deposited in two ways: both components V and C from solid state (targets) and reactive: V from solid state and C from CH₄-gas. Varied coating parameters are Ar:CH₄ flow-ratio and applied d.c. power on the C-Targets.

General approach:

Composition measured by means of EPMA-method

<u>Results and Outlook:</u>		
Results VN:	Results VC:	Results VAIN:
• VN-coating nanocrystalline	reactively deposited coatings	VAIN-coating nanocrystalline
• average crystallite size ~6nm	are almost amorphous and show poor mechanical properties	• average crystallite size ~4nm
near-stoichiometric	 sputtered coatings (V+C- 	near-stoichiometric
 friction coefficient ~0.7 	targets) are nanocrystalline	• friction coefficient ~0.7

• average crystallite size ~3nm mechanical properties advantageous friction coefficient variable through C-content (0.2-0.6)

Results V-Al-C-N:

• C-content in VAICN-layers has an impact on friction coefficient, see talk E3-2-7 on May, 1st by Dr. Ziebert

• combination of hard, metastable materials with a low friction coefficient on an industrial machine manageable

• first steps to understand the quaternary V-AI-C-N- layer-system through proceeding binary VN-, VC-, ternary VAIN- and quaternary VAICN-systems are done

• next steps: optimizing the VN-, VAIN- and VAICN layer-systems

This R&D project is partially funded by the Federal Ministry for Education and Research (BMBF) within the framework "Research for the Production of tomorrow"; under the grant 02PU2000 and is supported by the Project Management Agency Research Center Karlsruhe (PTKA), branch office Dresden, in the field of production and manufacturing technologies (PFT).

