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ARTICLE INFO ABSTRACT
Am’f{e history: Primary uterine inertia (PUI) is the most common type of dystocia in dogs. We hypothesized that PUI
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smooth muscle (SM) a- and y-actin and SM-myosin, and that the expression of these proteins is influ-
enced by the number of fetuses present in utero. Full-thickness inter-placental uterine biopsies were
collected during Cesarean sections from dogs with PUI (n = 11), and from bitches with obstructive
dystocia (OD) still presenting strong labor contractions (designated as the control group, n = 7). Relative
gene expression was determined by semi-quantitative real-time (TagMan) PCR, and protein localization

lé?rll‘;;uerds' by immunohistochemistry. Gene expression between PUI and OD bitches, and between PUI bitches
Parturition carrying small, large, or average number of fetuses according to their breed, were compared. Uterine SM-
Dystocia v-actin and SM-myosin mRNA levels were significantly higher in PUI than in OD dogs, while SM-a-actin
Uterine inertia did not differ. PUI bitches carrying large litters had lower uterine SM-y-actin gene expression than those
Contractility with small litters (P = 0.008). Immunostaining for SM-actin isoforms and SM-myosin was present in the
Myometrium myometrium, and localization pattern and staining intensity appeared similar in the PUI and OD groups.
All proteins stained in blood vessels, and SM-y-actin was also present in endometrial luminal and
glandular epithelium. In conclusion, higher uterine SM-y-actin and SM-myosin gene expression in PUI
bitches, compared with OD dogs, might be an indication of abnormal progression with labor. Whether
this is the cause of PUI due to an intrinsic error of the myometrium not becoming committed to labor, or
the consequence of inadequate endocrine or mechanical stimuli, is not clear. Litter size was previously
shown to be one of the risk factors for the development of uterine inertia in dogs, and our findings

suggest possible differing uterine pathophysiology of PUI with respect to litter size.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction Boston Terriers, Pugs, Chihuahuas, Bulldogs, Scottish Terriers,

Pomeranians, miniature Poodles and Dachshunds have even higher

Dystocia is a severe problem in the bitch and occurs in 5—16% of incidence rates [1,3—5]. Maternal causes of dystocia are two to
all parturitions [1,2]. Predisposed breeds, e.g. French Bulldogs, three times more likely than fetal factors, and primary uterine
inertia (PUI) accounts for 14—49% of dystocia cases in dogs [3,5,6].

Primary uterine inertia infers an idiopathic, spontaneous inertia,

which is defined by the inability of the myometrium to deliver

* Corresponding author. Department of Small Animal Clinical Sciences, Virginia- normal sized fetuses by functional contractions through an other-
Maryland College of Veterinary Medicine, 215 Duck Pond Dr, Blacksburg, VA, 24061, . _ .

USA. wise normal, unobstructed birth canal [7,8]. However, there are

E-mail address: obalogh@vt.edu (O. Balogh). different views regarding subgroups, i.e., total or incomplete PUI, or

! Equal contribution. associated clinical findings [6—15]. To what extent this impedes
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elucidation of the etiology and underlying pathophysiology of PUI
remains unclear. There appears to be breed predisposition for PUI
in Boxers, Shetland Sheepdogs, Border Collies, Labrador Retrievers
and Golden Retrievers [1,3,7,9,16]. Other predisposing factors are
older age of the bitch, disproportionally small or large litter size,
high body condition score/obesity, and nutritional or hormonal
imbalance [7,17,18].

Failure of adequate luteolysis and sustained high maternal pe-
ripheral progesterone (P4) concentrations were suspected, but not
confirmed in a case study on PUI [19], as all four bitches had P4
concentrations less than 2 ng/mL. Lower plasma prostaglandin F2a.
metabolite (PGFM) levels and higher P4/PGFM ratio [10], lower
total or ionized calcium (iCa) [13,20], higher magnesium [21], lower
plasma oxytocin and vasopressin [10,13], and higher serum para-
thyroid hormone concentrations [20], may contribute to canine
uterine inertia, whereas downregulation of uterine oxytocin re-
ceptors does not seem to play a role [11]. Genetic predisposition, as
well as metabolic defects at the cellular level, were also hypothe-
sized [17], implying direct effects on myometrial smooth muscle
cells. Presently, no definite conclusions can be drawn from the few
studies investigating the etiology of canine uterine inertia; how-
ever, a combination of several endocrine and metabolic alterations
seem to be implicated.

Parturition in dogs, similar to other species, is under a complex
neuro-hormonal regulation, where oxytocin and PGF2a play
essential roles in uterine contractions. The sensitivity of the canine
uterus to oxytocin increases during late pregnancy [22], and plasma
oxytocin concentrations become elevated and more variable during
the expulsive stage of parturition compared to late gestation [23].
Placental PGF2a production results in substantially increased
plasma PGFM levels shortly before birth, reaching peak concen-
trations during stage 2 labor [24,25]. These changes allow for
strong, aligned contractions of the myometrium, which is required
to guarantee successful expulsion of the fetus(es).

The actomyosin complex has been long known as the functional
contractile unit of the uterus [26]. Myosin consists of two pairs of
light chains and two heavy chains, with four splice variants of the
heavy chain being identified also in the uterus of several species
[27,28]. The expression and localization of smooth muscle myosin
(SM-myosin) in the canine uterus has not been investigated. Smooth
muscle contractions are based on the interaction between actin and
myosin, which is regulated by phosphorylation and dephosphory-
lation of the myosin light chain [29]. Binding of oxytocin or PGF2a. to
their G-protein coupled receptors on myometrial smooth muscle
cells initiates a stimulatory cascade leading to increased free intra-
cellular iCa (from the sarcoplasmic reticulum and from extracellular
iCa influx) and the formation of the calcium-calmodulin complex
[30—33]. Subsequently, myosin light chain kinase becomes activated
by associating with the calcium-calmodulin complex and phos-
phorylates the regulatory light chain of myosin. This triggers cross-
bridge cycling between actin filaments and myosin, i.e., muscle
contraction. A decrease in iCa deactivates myosin light chain kinase
and allows dephosphorylation of myosin by myosin light chain
phosphatase, which causes muscle relaxation [29,33,34]. Smooth
muscle cells have four different actin isoforms; it is the amount and
ratio of the SM-a-actin and SM-vy-actin isoforms that are reported to
depend on the type and physiologic state of the tissue [35—38]. In
rats, in contrast to relatively stable myometrial SM-a-actin levels, a
progressive rise in SM-y-actin mRNA and protein expression was
noted during pregnancy, with a peak of 31.78-fold increase in mRNA
and 16.7-fold increase in protein levels compared to non-pregnant
uteri, followed by a slight decrease to 15.21-fold higher than non-
pregnant myometrial mRNA levels on the day of labor. This change
in SM-y-actin was due to increased expression in the circular layer of
the myometrium [35]. These findings indicate that, in the rat, SM-vy-

actin plays an important role during pregnancy as well as in prep-
aration of the myometrium for contractions during labor, which may
also be true for other species, such as the dog. While uterine
expression and localization of SM-y-actin in bitches has not yet been
described, SM-a-actin immunoreactivity was found, not only in the
myometrium and vascular smooth muscle cells of non-pregnant
dogs [39], but also in uterine stromal cells during the pre-
implantation period [40]. Furthermore, SM-a-actin was strongly
induced in maternal decidual cells later in gestation [40], supporting
its role in canine pregnancy.

To date, the contractile apparatus of the canine uterus has not
been characterized so as to fully understand the etiology of
decreased myometrial contractility in PUL The goal of our study
was to investigate the localization and expression of SM-o.- and SM-
v-actin and SM-myosin in the uterus of parturient bitches diag-
nosed with PUI by history, clinical signs, imaging and tocodyna-
mometry [11,13,14,41], and to compare them with bitches without
myometrial dysfunction during whelping. We hypothesized that
uterine tissue expression of SM-a- and SM-y-actin and SM-myosin
may be decreased and/or the localization pattern of these proteins
altered in dogs with PUI, compared to bitches showing normal la-
bor contractions.

2. Material and methods
2.1. Animals and collection of uterine biopsy samples

Bitches presented with dystocia, and diagnosed with PUI or
obstruction treated with an emergency Cesarean section (CS), were
included in this study, provided they did not receive any ecbolic
(oxytocin, calcium) or tocolytic medication before sampling. All CS
were carried out only if medically indicated. A detailed general and
reproductive history was taken for all dogs, general clinical and
obstetrical examinations were carried out, body weight and body
condition score (BCS) were recorded, and further diagnostics (e.g.
bloodwork, diagnostic imaging) were performed as deemed
necessary.

The criteria used for categorizing bitches into the PUI or
obstructive dystocia (OD) groups were as described in our previous
work [41]. Although bitches showing adequate labor contractions
and giving birth to one or more puppies have been previously clas-
sified into PUI (partial or incomplete [6,8,13]), we only grouped
bitches into PUI if they had not given birth to any puppies. To be
assigned to the PUI group, they must have been in first stage labor for
> 20 h, or shown passage of fetal fluids or green vaginal discharge >
2—3 h previously without any visible abdominal contractions and
progress into adequate second stage labor, or had only weak, infre-
quent abdominal contractions for >4 h. Obstetrical evaluation was
performed at presentation during dystocia, and this included
palpation of the vagina and imaging in all cases. Additionally, toco-
dynamometry was used for 20 min if the dam'’s clinical condition
was stable, and if fetal heart rates were not reduced. PUI was diag-
nosed if there was no, or very weak abdominal straining in response
to digital vaginal stimulation to induce uterine contractions, and/or
weak, infrequent, or no uterine contractions measured with external
tocodynamometry. Obstruction of the birth canal was excluded by
digital vaginal palpation and/or abdominal radiographs. The control
group consisted of bitches presented with obstruction (OD group),
which was diagnosed based on radiographs and/or by vaginal
palpation. To achieve the goal of our study, i.e., to compare repre-
sentative uterine tissues from bitches with good, physiologic uterine
contractility to those with PUI, only dogs displaying strong sponta-
neous abdominal straining, as well as strong abdominal and uterine
contractions in response to digital vaginal stimulation, were
included in the OD group. Bitches with signs of systemic illness (e.g.
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sepsis, metritis) or other causes that could contribute to uterine
inertia development (e.g. uterine torsion, rupture) were not
included in the study.

The PUI group (n = 11) consisted of two Maremma Sheepdogs,
two Maltese, and one each of German Shepherd, Broholmer, Lab-
rador Retriever, Beagle, French Bulldog, Dachshund and Boxer. The
OD group (n = 7) was represented by two Chihuahuas and one each
of Cairn Terrier, Yorkshire Terrier, West Highland White Terrier,
Staffordshire Bullterrier and one medium size mixed breed dog.

Uterine tissue biopsies were collected during CS after all
puppies had been delivered. At the site of the hysterotomy incision,
one full thickness uterine tissue sample was excised from the
interplacental (IPL) uterus (between two placentation sites). In
bitches undergoing concurrent ovariohysterectomy at the time of
CS, samples were taken after the uterus was removed.

For immunohistochemistry (IHC), IPL tissues were fixed for
24 h at 4 °C in 10% neutral phosphate-buffered formalin, washed in
frequently changed phosphate-buffered saline, dehydrated in a
graded ethanol series and xylol, and embedded in paraffin. For
preservation of RNA, tissues were incubated for 24 h in RNAlater®
(Thermo Fisher Scientific, Waltham, MA, USA) at 4 °C, and later
stored at —80 °C until use.

Owners signed an informed consent for uterine biopsy sample
collection. The study was approved by the respective authorities
(Cantonal Veterinary Office Zurich, permit no. ZH086/15; Dyr-
eforsggstilsynet Fadevarestyrelsen, Denmark, permit no. 2015-15-
0201-00513).

2.2. Total RNA extraction and reverse transcription

TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) was used to
isolate total RNA from IPL uterine tissue samples, according to a
previously described protocol [42]. The extracted total RNA con-
centration was measured on a NanoDrop 2000C® spectrophotom-
eter (Thermo Fisher Scientific, Waltham, MA, USA). To eliminate
genomic DNA contamination, 200 ng total RNA per sample and
target gene was treated with RQ1 RNase-free DNase (Promega,
Diibendorf, Switzerland), according to the manufacturer’s protocol.
Reverse transcription was carried out using random hexamers and
reagents from Applied Biosystems (Foster City, CA, USA), according
to our protocol [42].

2.3. Molecular cloning of canine SM-«-actin, SM-vy-actin, and SM-
myosin heavy chain 11

To date, only predicted sequences are available for canine-
specific SM-a-actin (ACTA2, GenBank accession no. XM_534781.6),
SM-v-actin (ACTG2, GenBank accession no. XM_533002.5) and SM-
myosin (SM-myosin heavy chain 11, MYH11, GenBank accession no.
XM_005621514.2). Therefore, we performed molecular cloning and
sequencing of the respective genes to confirm their identity using
canine-specific primers (Microsynth AG, Balgach, Switzerland),
which are shown in Table 1. The cloned partial sequence of SM-
myosin is common in all four predicted canine sequence variants.
Briefly, GeneAmp Gold RNA PCR Kit (Applied Biosystems) was used
in a hot-start PCR, according to our protocol [42,43]. The annealing
temperature was 58 °C for all three genes. Amplification of cDNA,
corresponding to 200 ng DNase-treated total RNA from two uterine
samples, yielded PCR products of 676bp, 669bp and 598bp, corre-
sponding to partial canine sequences of SM-a-actin, SM-y-actin and
SM-myosin, respectively (Table 1). Autoclaved water, instead of
cDNA, was used as a negative control as well as an RT-minus control,
in which no RT reaction was carried out. PCR products were sepa-
rated on a 2% ethidium bromide-stained agarose gel, and were
extracted using a Qiaex II gel extraction system (Qiagen GmbH).

Subsequently, they were cloned into pGEM-T vector (Promega) and
transformed and amplified in XL1 Blue competent cells (Stratagene,
LaJolla, CA, USA). Plasmid DNA was purified with Pure Yield Plasmid
MidiPrep System (Promega) and sequenced on both strands with T7
and Sp6 primers (Microsynth). Sequence analysis showed 99%
identity of the cloned sequence to the predicted canine sequence of
SM-a-actin, and 100% homology between the cloned and predicted
canine sequences of SM-y-actin and SM-myosin heavy chain 11.
Partial CDs have been submitted to GenBank with accession number
MN968927 for SM-a-actin (ACTA2), MN968928 for SM-y-actin
(ACTG2), and MN968929 for SM-myosin (MYH11).

2.4. Semi-quantitative real-time (TagMan) PCR

Semi-quantitative real-time (TagMan) PCR was performed using
an automated fluorometer from Applied Biosystems (ABI PRISMpy
7500 Sequence Detections System, Foster City, CA, USA), according
to our previously described protocol [44]. Fast Start Universal Probe
Master (ROX®) (Roche Diagnostics AG, Schweiz) was used. All
samples were run in duplicates. Autoclaved water and the RT-minus
control (without RT reaction) served as negative controls. Canine-
specific primers and hydrolysis (TagMan) probes are listed in
Table 1. Hydrolysis (TagMan) probes were labeled at the 5-ends
with the reporter dye, 6-caroxyfluorescein (FAM), and at the 3’-ends
with the quencher, 6-carboxytetramethyl-rhodamine (TAMRA).
Canine glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Gen-
Bank: AB028142) [42]; Microsynth, Balgach, Switzerland) and
cyclophyllin A (Prod. No. Cf03986523-gH, Applied Biosystems, Foster
City, CA, USA) were used as reference genes. Efficiency of the PCR
reactions was ~100%, which was calculated with the CT slope
method according to the manufacturer’s instructions of the ABI
PRISM1p 7500 Sequence Detection System, and as previously
described [45]. Selected PCR products were sent for sequencing
(Microsynth).

Relative gene expression (RGE) was calculated based on the
comparative CT method (AACT method), according to the manu-
facturer’s protocol and our previous reports [42,4G]. The sample
with the lowest detectable amount of transcript was used as the
calibrator.

2.5. Immunohistochemistry

We used a previously described indirect immunoperoxidase
method for protein detection and localization in uterine tissues
[40,42]. Formalin-fixed IPL uterine samples were embedded in
paraffin, cut into 2—3 pum slices using a microtome, and mounted on
microscope slides (SuperFrost, Menzel-Glaeser, Braunschweig,
Germany) before being deparaffinized in xylol and rehydrated in a
graded ethanol series. Antigen retrieval was performed in 10 mM
citrate buffer (pH 6.0) at 100 °C for 15 min. Tissue samples were
allowed to cool, and then they were put into 0.3% hydrogen
peroxide in methanol for 30 min to stop endogenous peroxidase
activity. After being washed in IHC buffer solution (0.3% Triton X,
pH 7.2-7.4; 0.8 mM NayHPO4, 147 mM KH,PO4, 2.68 mM KCl,
137 mM Nacl), nonspecific binding sites were blocked with 1.5%
bovine serum albumin and 10% goat serum (for SM-myosin and
SM-vy-actin) or 10% horse serum (for SM-a-actin). Incubation with
the respective antibodies was carried out overnight at 4 °C. The
following antibodies and dilutions were used: Anti-smooth muscle
myosin heavy chain 11 (Abcam, Cambridge, UK; polyclonal rabbit
IgG; 1:500), anti-human smooth muscle a-actin (DAKO, Denmark
A/S; monoclonal mouse IgG2a; 1:800), and anti-smooth muscle y-
actin (AVIVA Systems Biology, San Diego, CA, USA; polyclonal rabbit
IgG; 1:1500). The antibody used for SM-myosin heavy chain 11
detects all heavy chain isoforms. After washing the slides with [HC



S. Egloff et al. / Theriogenology 156 (2020) 162—170 165

Table 1

List of canine-specific primers used for molecular cloning, and canine-specific primers and TagMan probes used for semi-quantitative real-time PCR.

Gene Application  Primer and TagMan probe sequences Amplicon length ~ GenBank Accession no.
SM-a-actin (ACTA2) Cloning Forward primer: 5'- TAG AAC ACG GCA TCA TCA CC — 3/ 676 bp XM_534781.6
Reverse primer: 5’'- TTG GCG TAC AGG TCT TTC CT — 3’
qPCR Forward primer: 5'- ACA CGG CAT CAT CAC CAA CTG — 3/ 97 bp
Reverse primer: 5'- CAG GGT GGG ATG CTC TTC GG — 3’
TagMan probe: 5'- TTT CTA CAA CGA GCT CCG TGT CGC CC — 3’
SM-vy-actin (ACTG2) Cloning Forward primer: 5'- ATT CAA GCC GTG CTG TCT CT — 3’ 669 bp XM_533002.5
Reverse primer: 5'- GCT GAT CCA CAT CTG CTG AA — 3’
qPCR Forward primer: 5'- GCC GTG ACC TCA CTG ACT ACC — 3’ 120 bp
Reverse primer: 5'- CCA GGG CCA CAT AGCATAGCTT — 3
TagMan probe: 5'- TCG CAC AAT TTC TCG CTC AGC TGT GGT — 3’
SM-myosin (heavy chain 11, MYH11)  Cloning Forward primer: 5'- CGC CAC ATC TCA ACT CTG AA — 3/ 598 bp XM_005621514.2
Reverse primer: 5'- GCT TGG CAT CTT CTG TAG CC — 3’
qPCR Forward primer: 5'- GGC TTC AGC AGG AGC TGG AC — 3’ 111 bp
Reverse primer: 5’- TCT CCT CAG CCA ACA ACT GAT CG — 3/
TagMan probe: 5'- ACC AGC GGC AAC TGG TGT CCA ACC — 3’
GAPDH qPCR Forward primer: 5'-GCT GCC AAA TAT GAC GAC ATC A-3’ 75 bp AB028142

Reverse primer: 5'-GTA GCC CAG GAT GCC TTT GAG-3’
TagMan probe: 5'-TCC CTC CGA TGC CTG CTT CAC TAC CTT-3'

buffer solution to remove unbound primary antibody, a bio-
tinylated secondary goat anti-rabbit IgG antibody (Vector Labora-
tories, Burlingame, CA, USA) for SM-myosin and SM-y-actin, and a
horse anti-mouse IgG (Vector Laboratories, Burlingame, CA, USA)
for SM-a-actin, were applied for 30 min at a dilution of 1:100. In the
next step, an avidin/biotinylated peroxidase complex (Vectastain
ABC Kit, Vector Laboratories, Burlingame, CA, USA) was used for
30 min to enhance signals. Color reaction was achieved by applying
3,3/-diaminbenzidine (Liquid DAB + substrate Kit, Dako Schweiz
AG, Baar, Switzerland). Finally, slides were counterstained with
Mayer’s hematoxylin and dehydrated in a graded ethanol series.
The following isotype controls were used for each antibody as
negative controls: For SM-o-actin, the primary antibody was
replaced with pre-immune mouse IgG2a (EXBIO Praha a.s., Vestec,
CZ), and for SM-y-actin and SM-myosin heavy chain 11, pre-
immune rabbit IgG was used (Vector Laboratories, Burlingame,
CA, USA). IHC slides were assessed qualitatively.

2.6. Statistical analysis

Data were evaluated using IBM SPSS® Statistics for Windows,
Version 24.0 (Armonk, NY, USA) program package. Body weight
(BW), body condition score, age, current pregnancy number, and
litter size were compared between dystocia groups (PUI and OD)
using a t-test or a Mann-Whitney U test. Univariate ANOVA was
used to compare relative gene expression (RGE) of SM-a-actin, SM-
y-actin, and SM-myosin in the IPL uterine tissues between the PUI
and OD groups. Group was used as the fixed factor, and because BW
of the bitches in the two dystocia groups was significantly different,
BW was added as covariate in the analysis to account for that
difference.

Afterwards, the PUI group was divided into three subgroups
based on their litter size relative to the breed average litter size [47].
Normal litter size (PUI-N) was defined, when the number of
puppies born was within +1 standard deviation (SD) of the breed
average. Small litter size (PUI-S) was defined as below -1SD of the
breed average, and large litter size (PUI-L) was defined as
above +1SD of the breed average. Gene expression within these PUI
subgroups was analyzed with univariate ANOVA using subgroup as
the fixed factor followed by Tukey Honestly Significant Difference.
BW was similar among the PUI subgroups (P = 0.639, univariate
ANOVA) and therefore not included in this analysis.

Lastly, taking all participating bitches into account (PUI and OD
together), Pearson correlation was used to determine the associations

among the expression of the respective genes. Level of significance for
all analyses was set at P < 0.05.

3. Results
3.1. Animals and groups

Mean body weight of bitches in the PUI group was higher than
that in the OD group (P = 0.017; Table 2). No difference in body
condition score, age, current pregnancy number or litter size was
found between the two dystocia groups (P > 0.220; Table 2). Four
dogs in the PUI group had smaller than breed average litter size
(Dachshund, French Bulldog, Boxer, Maremma Sheepdog), four had
average litter size (Maltese, German Shepherd, Labrador Retriever,
Broholmer), and three had more than the breed average number of
puppies (Maltese, Beagle, Maremma Sheepdog). All dogs in the OD
group had litter size according to breed average, except one
Chihuahua bitch with only two puppies.

3.2. Gene expression of SM-a-actin, SM-vy-actin and SM-myosin in
interplacental uterine tissues

Gene expression of SM-y-actin and SM-myosin in the uterus
was higher in the PUI group than in the OD group (P = 0.006 and
P = 0.018, respectively), while there was no difference in SM-a-
actin mRNA levels (Fig. 1).

Comparing PUI subgroups, which were created according to
litter size, a significant difference was found in the relative gene
expression of SM-y-actin, but not in SM-a-actin and SM-myosin
(P = 0.269 and P = 0.385, respectively; Fig. 2). Bitches with PUI
carrying more puppies than the breed average had lower uterine
SM-vy-actin mRNA expression than dogs with a smaller than
average litter size (P = 0.008).

Analyzing all bitches together, moderate to strong positive
correlations (Fig. 3) were detected between uterine mRNA con-
centrations of SM-a-actin and SM-y-actin (r = 0.674, P = 0.001),
and between SM-myosin and both actin isoforms (SM-y-actin,
r = 0.747, P < 0.0001; SM-a-actin, r = 0.708, P = 0.001).

3.3. Immunohistochemical detection of SM-a-actin, SM-y-actin and
SM-myosin in interplacental uterine tissues

Immunostaining for both SM-actin isoforms (Figs. 4 and 5) and
for SM-myosin (Fig. 6) was detected in the circular and longitudinal
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Table 2

General and reproductive characteristics of bitches in the study.
Dystocia groups N BW (kg) BCS Age (years) Current pregnancy number Litter size
PUI 11 28.26 + 20.14% (5.6—70.1) 443 + 0.98% (3—6)* 445 + 1.94% (1.9-7.1) 2.1 + 0.99 (1-4)f 5.64 + 3.07% (2—9)
oD 7 9.26 + 6.67° (2.9-21.2) 433 + 0.82% (3—5)} 3.13 + 2.43% (0.9-8.1) 1.57 + 0.79* (1-3) 429 + 2.06% (2—8)

b different superscripts in a column denote significant differences between dystocia groups; *data not available for three animals; ‘data not available for one animal; PUI:
primary uterine inertia; OD: obstructive dystocia; BW: body weight; BCS: body condition score on a 9-point scale [48]. Mean + standard deviation and minimum-maximum in

parentheses are shown.

A C
20 - 20 - 20 - 5
£ 15 - £ 15 a £ 15 1 ‘
8 8 ] g b
S > b E
? 10 | = 10 - = 10 - J
=
3 ] [ 7] [ & =
1] L w
5 1 O 5 5 4
A A o
0 Oo+—— 0 T 1
PUI oD PUI oD PUI oD

Fig. 1. Relative gene expression (RGE) of A) smooth muscle a-actin (SM-¢-actin), B) smooth muscle y-actin (SM-y-actin), and C) smooth muscle myosin heavy chain 11 (SM-myosin)
as determined by semi-quantitative real-time (TagMan) PCR in interplacental uterine tissue homogenates of bitches in the primary uterine inertia (PUI) and obstructive dystocia
(OD) groups. Bars denote the mean and whiskers denote the standard deviation. Different letters (a,b) denote significant (P < 0.05) differences between the groups as evaluated by

ANOVA with body weight included as covariate.

layers of the myometrium in both the PUI and OD groups. Beside
diffuse cytoplasmic signals, a strong, round staining pattern was
visible under the plasma membrane of some of the myometrial
smooth muscle cells for all proteins (Figs. 4C, 5C and 6C). We did not
observe a difference in localization pattern or staining intensity
between the PUI and OD groups, or between PUI subgroups, in
regard to SM-a- and -y-actin and SM-myosin. However, there were
individual differences in staining intensity. Positive immunoreac-
tivity was found for all proteins in the tunica media of blood vessels
(Figs. 4—6), and in the basement membrane of blood vessels for
SM-a-actin and SM-y-actin (Figs. 4 and 5). SM-y-actin protein was
also expressed in luminal and glandular epithelial cells of the
endometrium (Fig. 5D).

4. Discussion

All contractile proteins in our study, i.e., SM-a-actin, SM-y-actin,
and SM-myosin, were predominantly localized in the myometrium,
confirming their role in uterine smooth muscle contractions in the
dog. Not surprisingly, given that SM-actin and SM-myosin

interactions are ultimately responsible for muscle contractions
[29,33,34], their mRNA concentrations showed strong correlations.
Furthermore, the presence of distinct immunoreactive areas, which
we observed for all proteins close to the plasma membrane in some
myometrial smooth muscle cells, might be a common feature of the
parturient canine uterus, similarly to what had been described in
late pregnant rats [35].

Differences in gene expression of SM-y-actin and SM-myosin
between PUI and control OD bitches support our hypothesis of an
altered uterine environment, which may be responsible for inad-
equate uterine contractions in PUI cases. Finding higher mRNA
concentrations of these contractile proteins in dogs with uterine
inertia seems at first conflicting, assuming that a more abundant
contractile machinery would be capable of stronger contractions.
The myometrium undergoes substantial morphologic and
biochemical changes during pregnancy, by the end of which it ac-
quires the laboring phenotype, enabling the dam to undergo
parturition [49]. Accordingly, the abundance of the actomyosin
complex, the primary contractile element in the uterus, increases
during pregnancy, reaching maximum levels at the time of labor,
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Fig. 2. Relative gene expression (RGE) of A) smooth muscle a-actin (SM-a-actin), B) smooth muscle y-actin (SM-y-actin), and C) smooth muscle myosin heavy chain 11 (SM-myosin)
as determined by semi-quantitative real-time (TagMan) PCR in interplacental uterine tissue homogenates of bitches in the primary uterine inertia (PUI) group with different litter
sizes. PUI-S stands for small, PUI-N for normal (average) and PUI-L for large litter size. Litter size classification was done according to the average of the breed [47]. Bars denotes the
mean and whiskers the standard deviation. Different letters (a, b) denote significant (P < 0.05) differences between the groups as evaluated by ANOVA.
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Fig. 3. Correlation of relative gene expression (RGE) of A) smooth muscle a-actin (SM-z-actin) and smooth muscle y-actin (SM-y-actin) (r = 0.674, P = 0.001), B) smooth muscle
myosin heavy chain 11 (SM-myosin) and SM-y-actin (r = 0.747, P < 0.0001), and C) SM-myosin and SM-a-actin (r = 0.708, P = 0.001) in interplacental uterine tissue samples of all

bitches (primary uterine inertia and obstructive dystocia groups together).

and decreases quickly after parturition [26]. In rats, myometrial
SM-y-actin mRNA expression slightly decreased from peak levels
on day 19 of pregnancy to the day of labor, and then dropped
significantly by day 1 postpartum [35], which is likely a physiologic
process. If we assume that SM-y-actin expression also decreases
from the end of pregnancy through successful labor in the uterus of
bitches, similar to rats, then the myometrium of dogs belonging to
the PUI group did not progress to an adequate laboring phenotype.
In contrast, dogs in the OD group, which presented with strong
uterine contractions consistent with normal second stage labor,

had significantly lower SM-y-actin and SM-myosin gene expression
levels. Whether this is the reason or the consequence of abnormal
labor in PUI bitches is unclear. Quantification of protein expression
(by Western blotting) might provide additional insights into the
role of the respective proteins. Similar to our findings, the cause and
effect dilemma was also noted in a recent study, which investigated
uterine oxytocin receptor mRNA expression in the etiology of
canine dystocia. After a physiologic upregulation near term
[11,22,50], down-regulation of uterine oxytocin receptors was
shown to occur with prolonged labor [11]. However, in bitches with

Fig. 4. Immunohistochemical localization of smooth muscle ¢-actin in a representative interplacental uterine tissue sample from A) the primary uterine inertia group and B) the
obstructive dystocia group. In both groups, positive immunoreactivity for smooth muscle a-actin is visible in the longitudinal (» ) and circular (> ) layer of the myometrium. Signals
were also detected in blood vessels (— ) in the tunica media and basement membrane. Inset shows the isotype control. C) Smooth muscle cells in the myometrium show diffuse
immunostaining in the cytoplasm, while in some cells, strong immunoreactivity appearing as a ring in the area under the plasma membrane, is visible (>). D) In the endometrium,
positive smooth muscle o-actin immunoreactivity was detected in blood vessels (—). A,B: Scale bar = 400 um. C,D: Scale bar = 50 pm.
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Fig. 5. Immunohistochemical localization of smooth muscle y-actin in a representative interplacental uterine tissue sample from A) the primary uterine inertia group and B) the
obstructive dystocia group. Immunoreactivity for smooth muscle y-actin is visible in the longitudinal (» ) and circular (> ) layer of the myometrium in both groups. Positive staining
is also detectable in the tunica media and basement membrane of blood vessels (— ). Inset shows the isotype control. C) Smooth muscle cells in the myometrium show diffuse
immunostaining in the cytoplasm, while in some cells, strong immunoreactivity, appearing as a ring in the area under the plasma membrane, is visible (>). D) In the endometrium,
smooth muscle y-actin immunoreactivity was noted in luminal (=) and glandular epithelial cells at the plasma and basement membrane, and in blood vessels (— ). A,B: Scale

bar = 400 um. C,D: Scale bar = 50 pm.

complete PUI, uterine oxytocin receptor gene expression showed a
large variation and did not differ from the other groups, i.e., partial
PUI, or bitches undergoing elective CS showing upregulation, or
those with obstructive dystocia showing downregulation [11].
Overall, at this point, it appears plausible that uterine inertia either
develops because of inadequate progression of uterine responses to
normal or abnormal parturition signals, or because of de novo
abnormal expression of contractile and contractility-associated
proteins in the uterus, or as a result of both.

Next, we wanted to prove that litter size accounts for different
pathogenesis of PUI, e.g. possible suboptimal stimulation in the
case of a small litter vs. overstretching of the myometrium in the
case of a large litter. Therefore, we compared uterine expression of
the smooth muscle actin isoforms and SM-myosin across the three
PUI groups. Although one might expect higher expression of each
contractile element in dogs with large litter size as their uteri have
to be prepared for a longer, and perhaps more exhausting labor
period, an inverse relationship between SM-y-actin and litter size
was found at the mRNA level. This finding may indicate a more
advanced timeline of labor events in PUI-L bitches. Nevertheless, a
larger number of fetuses and a more distended uterus could have
influenced other endocrine, biochemical, or mechanical pathways
not investigated here, which decrease or inhibit uterine contrac-
tions. In contrast to PUI-L dogs, higher uterine SM-y-actin gene

expression in PUI-S bitches could be the sign of insufficient prog-
ress with normal second stage labor.

Our study was performed in a real clinical setting. However,
including dogs of various breeds and sizes presented for dystocia in
emergency might hinder the meaningfulness of results. To reduce
this limitation of our study design, we applied strict criteria not
only to patient selection, i.e., exclusion of bitches that received
medications, but also to inclusion in the PUI or OD groups, although
this made finding enough affected individuals time-consuming.
Furthermore, to account for at least some aspects of this diversity,
we included body weight in the statistical evaluation.

Our PUI diagnosis was made in a similar fashion to previous
reports in clinical settings [10,11,13], although ideally, a combina-
tion of history, clinical findings and specific measurements per-
formed in defined time windows, e.g. Doppler sonography for
uterine perfusion [51,52], degree of cervical dilation, and/or toco-
dynamometry from before stage 1 labor [19] should be used to
classify cases into PUI or PUI subgroups (i.e., total or incomplete).
Serial tocodynamometry recordings starting already one week
before the expected day of whelping in bitches entering breeding
facilities [19] might be a superior method, but it is not available in
all countries. At home tocodynamometry monitoring may be
beneficial for individual breeders, if performed under close veter-
inary supervision to facilitate dystocia recognition and admittance
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o

Fig. 6. Immunohistochemical localization of smooth muscle myosin (heavy chain 11) in a representative interplacental uterine tissue sample from A) the primary uterine inertia
group and B) the obstructive dystocia group. Staining for smooth muscle myosin heavy chain 11 is detectable in the longitudinal (» ) and circular (&) layer of the myometrium, and
in the tunica media of blood vessels (— ) in both groups. Inset shows the isotype control. C) Smooth muscle cells in the myometrium show diffuse immunostaining in the cytoplasm,
while in some cells, strong immunoreactivity appearing as a ring in the area under the plasma membrane, is visible (>). D) In the endometrium, only blood vessels had positive

signals. A,B: Scale bar = 400 um. C,D: Scale bar = 50 um.

of patients to veterinary hospitals if treatment becomes necessary.
In women, electrohysterography or intrauterine pressure re-
cordings more reliably reflect uterine activity [53—55]; however,
they are not yet established in the dog. As most bitches with PUI
(total or incomplete) will undergo CS, with or without prior med-
ical treatment attempts [6,13,56], it has long been desired to seek
the cause of, as well as potential new therapies for, canine uterine
inertia [9]. Our goal to advance canine obstetrics is similar to that of
human medicine, ie., “Future research to enhance our under-
standing of optimal contractile activity and the causes of ineffectual
contractions is necessary as we seek to lower rates of cesarean
deliveries* [53].

5. Conclusion

In conclusion, we found that the myometrium of parturient
bitches expresses both SM-actin isoforms (o and vy), as well as SM-
myosin (heavy chain 11). Uterine gene expression of these major
contractile elements showed strong correlations, pinpointing their
concerted function in contractility. We could not confirm our hy-
pothesis that inadequate uterine contractions in PUI dogs are a
consequence of decreased uterine expression of these contractile
proteins. Instead, we found that PUI bitches had significantly higher
inter-placental uterine SM-y-actin and SM-myosin gene expression
compared to OD bitches, which is likely an indication of their

abnormal progression with labor. Whether this is the cause of
uterine inertia due to an intrinsic error of the myometrium not
becoming fully committed to labor, or the consequence of inade-
quate or a lack of endocrine or mechanical stimuli, is not yet clear,
and needs further investigation. Litter size was previously shown to
be one of the risk factors for the development of uterine inertia in
dogs [6,7], and we hypothesized that the expression of the con-
tractile elements in the uterus varies with litter size. Our data
supports this assumption by showing that bitches carrying smaller
or larger than breed average number of fetuses differ in their
uterine gene expression of SM-y-actin, which underscores the
possible difference in uterine pathophysiology of PUI with respect
to litter size.
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