384 research outputs found

    Electric field and aging effects of uniaxial ferroelectrics Sr x Ba1-x Nb2O6 probed by Brillouin scattering

    Get PDF
    This study was supported in part by the Marubun Research Promotion Foundation and JSPS KAKENHI Grant Number JP17K05030.Static and dynamic heterogeneity of disordered system is one of the current topics in materials science. In disordered ferroelectric materials with random fields, dynamic polar nanoregions (PNRs) appear at Burns temperature and freeze into nanodomain state below Curie temperature (T C). This state is very sensitive to external electric field and aging by which it gradually switches into macrodomain state. However, the role of PNRs in such states below T C is still a puzzling issue of materials science. Electric field and aging effects of uniaxial ferroelectric Sr x Ba1-x Nb2O6 (x = 0.40, SBN40) single crystals were studied using Brillouin scattering to clarify the critical nature of PNRs in domain states below T C. On field heating, a broad anomaly in longitudinal acoustic (LA) velocity at low temperature region was due to an incomplete alignment of nanodomains caused by the interaction between PNRs. A sharp anomaly near T C was attributed to the complete switching of nanodomain to macrodomain state owing to the lack of interaction among PNRs. After isothermal aging below T C, the noticeable increase of LA velocity was observed. It was unaffected by cyclic temperature measurements up to T C, and recovered to initial state outside of a narrow temperature range above and below aging temperature.Japan Society for the Promotion of Scienc

    A new Krakow scanning nuclear microprobe: performance tests and early application experienc

    No full text
    A new scanning nuclear microprobe (MP) with a short-length probe forming system was designed, installed and tested at the 3MV Van de Graaff accelerator in Krakow. The MP resolution of 3.3mm was reached for a 2.4 MeV proton beam in the high-current mode (≥100pA). The MP facility provides a local, non-destructive, quantitative elemental microanalysis using a Proton Induced X-ray Emission (PIXE) technique. As example of possible applications an analysis of a geological sample containing monazite crystals investigated by PIXE method is presented

    Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences

    Get PDF
    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.

    Acceleration of generalized hypergeometric functions through precise remainder asymptotics

    Full text link
    We express the asymptotics of the remainders of the partial sums {s_n} of the generalized hypergeometric function q+1_F_q through an inverse power series z^n n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k} may be recursively computed to any desired order from the hypergeometric parameters and argument. From this we derive a new series acceleration technique that can be applied to any such function, even with complex parameters and at the branch point z=1. For moderate parameters (up to approximately ten) a C implementation at fixed precision is very effective at computing these functions; for larger parameters an implementation in higher than machine precision would be needed. Even for larger parameters, however, our C implementation is able to correctly determine whether or not it has converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added several references, added comparison to other methods, and added discussion of recursion stabilit

    Electric field and aging effects of uniaxial ferroelectrics Sr x Ba1−x Nb2O6 probed by Brillouin scattering

    Get PDF
    Static and dynamic heterogeneity of disordered system is one of the current topics in materials science. In disordered ferroelectric materials with random fields, dynamic polar nanoregions (PNRs) appear at Burns temperature and freeze into nanodomain state below Curie temperature (TC). This state is very sensitive to external electric field and aging by which it gradually switches into macrodomain state. However, the role of PNRs in such states below TC is still a puzzling issue of materials science. Electric field and aging effects of uniaxial ferroelectric Sr x Ba1−x Nb2O6 (x = 0.40, SBN40) single crystals were studied using Brillouin scattering to clarify the critical nature of PNRs in domain states below TC. On field heating, a broad anomaly in longitudinal acoustic (LA) velocity at low temperature region was due to an incomplete alignment of nanodomains caused by the interaction between PNRs. A sharp anomaly near TC was attributed to the complete switching of nanodomain to macrodomain state owing to the lack of interaction among PNRs. After isothermal aging below TC, the noticeable increase of LA velocity was observed. It was unaffected by cyclic temperature measurements up to TC, and recovered to initial state outside of a narrow temperature range above and below aging temperature

    Climate threats to coastal infrastructure and sustainable development outcomes

    Get PDF
    Climate hazards pose increasing threats to development outcomes across the world’s coastal regions by impacting infrastructure service delivery. Using a high-resolution dataset of 8.2 million households in Bangladesh’s coastal zone, we assess the extent to which infrastructure service disruptions induced by flood, cyclone and erosion hazards can thwart progress towards the Sustainable Development Goals (SDGs). Results show that climate hazards potentially threaten infrastructure service access to all households, with the poorest being disproportionately threatened in 69% of coastal subdistricts. Targeting adaptation to these climatic threats in one-third (33%) of the most vulnerable areas could help to safeguard 50–85% of achieved progress towards SDG 3, 4, 7, 8 and 13 indicators. These findings illustrate the potential of geospatial climate risk analyses, which incorporate direct household exposure and essential service access. Such high-resolution analyses are becoming feasible even in data-scarce parts of the world, helping decision-makers target and prioritize pro-poor development

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore