816 research outputs found

    The eigenvalue problem for the ∞-Bilaplacian

    Get PDF
    We consider the problem of finding and describing minimisers of the Rayleigh quotient Λ∞:=infu∈W2,∞(Ω)∖{0}∥Δu∥L∞(Ω)∥u∥L∞(Ω), Λ∞:=infu∈W2,∞(Ω)∖{0}‖Δu‖L∞(Ω)‖u‖L∞(Ω), where Ω⊆RnΩ⊆Rn is a bounded C1,1C1,1 domain and W2,∞(Ω)W2,∞(Ω) is a class of weakly twice differentiable functions satisfying either u=0u=0 on ∂Ω∂Ω or u=|Du|=0u=|Du|=0 on ∂Ω∂Ω . Our first main result, obtained through approximation by LpLp -problems as p→∞p→∞ , is the existence of a minimiser u∞∈W2,∞(Ω)u∞∈W2,∞(Ω) satisfying {Δu∞∈Λ∞Sgn(f∞)Δf∞=μ∞ a.e. in Ω, in D′(Ω), {Δu∞∈Λ∞Sgn(f∞) a.e. in Ω,Δf∞=μ∞ in D′(Ω), for some f∞∈L1(Ω)∩BVloc(Ω)f∞∈L1(Ω)∩BVloc(Ω) and a measure μ∞∈M(Ω)μ∞∈M(Ω) , for either choice of boundary conditions. Here Sgn is the multi-valued sign function. We also study the dependence of the eigenvalue Λ∞Λ∞ on the domain, establishing the validity of a Faber–Krahn type inequality: among all C1,1C1,1 domains with fixed measure, the ball is a strict minimiser of Ω↦Λ∞(Ω)Ω↦Λ∞(Ω) . This result is shown to hold true for either choice of boundary conditions and in every dimension

    Modal analysis of holey fiber mode-selective couplers

    No full text
    Mode Division Multiplexing is currently investigated as a possible way to increase fiber system capacity. With this approach, different modes of the same fiber carry distinct information. One of the problems to be solved in these systems concerns coupling/decoupling of the various modes to/from the same fiber. In this presentation, the mode features of a mode mux/demux based on holey fibers are investigated, with particular emphasis on optimal device design. Some preliminary experimental results will also be presented

    Early respiratory viral infections in infants with cystic fibrosis

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. Methods Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. Results Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. Conclusions Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF

    The prescribed mean curvature equation in weakly regular domains

    Get PDF
    We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a \textit{generalized Gauss-Green theorem} based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a \textit{weak Young's law} for (Λ,r0)(\Lambda,r_{0})-minimizers of the perimeter.Comment: 23 pages, 1 figure --- The results on the weak normal trace of vector fields have been now extended and moved in a self-contained paper available at: arXiv:1708.0139

    Dual-Layer Corrugated Plate Antenna

    Get PDF
    This letter presents a subwavelength slot-fed high-gain dual-layer corrugated plate antenna for X-band applications. The antenna is realized by placing a second corrugated layer that has three radiating slots on top of the traditional corrugated plate antenna. The addition of the second layer improves the gain and bandwidth of the proposed antenna. Compared to a traditional single-layer corrugated plate antenna, the proposed dual-layer antenna has higher gain, lower sidelobe level, narrower half-power beamwidth, and better impedance bandwidth. A prototype of the proposed antenna is built and tested, and the measured results show that the antenna has a peak gain of 16.3 dBi at 11.3 GHz. The gain of the proposed antenna has been improved by more than 4 dBi due to coupling more energy to the second layer's three slots. Finally, the operating principles of the proposed antenna are also discussed and analyzed thoroughly

    Analyticity and criticality results for the eigenvalues of the biharmonic operator

    Full text link
    We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.Comment: To appear on the proceedings of the conference "Geometric Properties for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in Palinuro (Italy), May 25-29, 201

    Intestinal PPARγ signalling is required for sympathetic nervous system activation in response to caloric restriction.

    Get PDF
    Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes

    Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method

    Get PDF
    We investigate the use of a hybrid nanoresonator comprising a photonic crystal (PhC) cavity coupled to a plasmonic bowtie nanoantenna (BNA) for the optical trapping of nanoparticles in water. Using finite difference time-domain simulations, we show that this structure can confine light to an extremely small volume of ~30,000 nm3 (~30 zl) in the BNA gap whilst maintaining a high quality factor (5400–7700). The optical intensity inside the BNA gap is enhanced by a factor larger than 40 compared to when the BNA is not present above the PhC cavity. Such a device has potential applications in optical manipulation, creating high precision optical traps with an intensity gradient over a distance much smaller than the diffraction limit, potentially allowing objects to be confined to much smaller volumes and making it ideal for optical trapping of Rayleigh particles (particles much smaller than the wavelength of light)
    corecore