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Abstract: The simulated characterisation and tuning of prototype antennas prior to manufacture is 

described in this article. The antennas incorporate Schottky diodes so as to frequency triple incident sub-

THz power. Such a dual frequency, nonlinear, device has been called a multenna. A metrology is outlined 

for ease of multiple measurements to permit exploring scenarios of multenna element design. Four options 

are optimally oriented and assembled onto an appropriately dimensioned tile substrate to minimise mutual 

coupling during characterisation of each element individually. Transmission measurements of the 

multennas are performed at 100 and 300 GHz: an example of resonant behaviour is presented. 

1. Introduction 

Unlike X-rays, non-ionising terahertz (THz) radiation is not known to damage organic material. 

Therefore over the last decades many applications have been studied using THz radiation, namely: 

spectroscopy; bio-sensing; medical and pharmaceutical applications; and potential industrial and security 

applications [1-6]. However, the full exploitation of this sub-band of the electromagnetic spectrum is 

currently limited by the availability of wideband, coherent, THz sources. As summarized in [7], different 

technologies can be used to create THz sources. The most common technique is to frequency multiply 

from a lower frequency electronic source using a non-linear, usually Schottky diode-based, multiplier [8]. 

The key limitation of this is that the maximum output power decreases with increasing frequency i.e., W at 

100s MHz dropping to µW at THz. Another limitation is that antennas, and associated RF circuitry, are 

difficult to miniaturize for operation at THz frequencies. Nevertheless, frequency multipliers are 

convenient because they are phase-lockable and frequency agile, do not need cryogenic cooling, are robust 

and compact, and have a long operational lifetime. Even so, state-of-the-art solid-state Schottky multiplier 

chains are based on waveguide technology that is bulky [9] so that in an array format, individual tuning of 

elements is impracticable. In view of this, our development route is to create a quasi-optical (QO) 

multiplier array. No waveguides are needed and the multiplied outputs from elemental solid-state devices 

are coherently combined. Non–linear devices, GaAs Schottky diodes, are coupled to antenna array 

elements whose outputs are spatially combined (as a coherent planar sum), as opposed to conventional 

Page 1 of 23

IET Review Copy Only

IET Microwaves, Antennas & Propagation



2 

 

(longitudinal) power combining [10, 11]. The main advantages of a QO multiplier array are the lateral 

compactness of the device, built-in frequency and polarization control, simpler impedance matching, 

reduced ohmic losses and, as each element contributes a small part of the total power, there is reduced risk 

of thermal breakdown. Previous studies on QO diode-based multipliers are based on simplistic multiplier 

elements like wire grids [12], waveguide slots [13], bow-tie antennas [14] or patch antennas [15]. Most of 

these studies used the harmonic balance technique to design QO multipliers, and only a limited amount of 

work includes full-wave simulations of the QO multiplier with a detailed diode structure [13]. This work 

suggests an alternative design of the diode-coupled antenna element based on a ring-with-stubs structure, 

which is optimized to match the diode impedance at both fundamental and 3
rd

 harmonic. The majority of 

the previous studies use HFSS in combination with ADS for full-wave EM analysis of the structures [16]. 

This work uses the built-in FDTD method of CST with incorporation of lumped elements for analysis of 

the multenna. This method has been rarely adopted previously, and only for multipliers below 20 GHz 

[13]. 

In this article we report on a slot-ring antenna loaded with a frequency tripling Schottky diode to 

form the basis of a THz source. This hybrid device is called a ‘multenna’. The multenna, which has met 

performance specifications in simulation, is manifest as a completely planar, printable, integrated device 

[17]. To go from simulation to measurement, a prototype of the multenna has been developed. The key 

constraint to its manufacture is its operating size. The size concern is firstly addressed and then the 

apparatus for experimental verification is covered. In summary, this new multenna structure is proposed in 

order to meet ultimately both antenna specifications and, manufacture and measurement requirements of a 

compact, coherent, high-power (~ 10s mW), THz source. This paper also shows that the lumped element 

FDTD method can be utilized for sub-THz multipliers and results of simulation and measurements agree. 

In contrast to previous studies, this paper shows both passive (S21 transmission – to test resonant behavior) 

and active (to characterize tripling performance) measurements of the tripler. 

2. The multenna 

As described by Pigeon et al. [17, 18], the multenna is an antenna operating at two different 

frequencies; here 100 and 300 GHz. This is possible due to the incorporation in the antenna design of a 

GaAs diode acting as a tripler. The bespoke single Schottky diode used in each device is fabricated at the 

Rutherford Appleton Laboratory (RAL). The multennas are photolithographically defined on a 2-3 µm 

thick gold layer that is deposited by a combination of sputtering and electroplating on a 75 µm thick fused 

quartz substrate. This is a standard process used for forming microstrip filters and transmission lines in 

waveguide mixers and multipliers at RAL [19]. The quartz substrate is then mounted on a PTFE holder 
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and the discrete diode chips are soldered in place. This antenna is based on a slot-ring design. It has been 

optimized for the generation of a third harmonic (not discussed in this article). Consequently, the length of 

the perimeter of the antenna is around 1 λ of the lower frequency (100 GHz). The antenna has been 

iteratively tuned to match the specific impedance of the diode at both 100 and 300 GHz. This increases the 

power available to drive the diode and optimised the generated third harmonic power. 

The planar gold slot multenna is contained on a fused quartz dielectric square with a side-length of 

the metallised area of 1 mm. One of the designs of the multenna that meet specifications in fabrication 

tolerances is shown in Fig. 1.  

 

Fig. 1: One possible design of the multenna, termed “ET”: it is a modified slot ring with stubs to enhance third 

harmonic yield. (a) Shows a schematic of the antenna and, (b) is a photograph of the manufactured antenna. The grey rectangle 

in (b) is the chip that carries the Schottky diode. 

This specific design uses the well-known techniques of deploying quarter-wavelength stubs (in the 

minima of the field distribution of third harmonic) to create nulls in the electric field distribution at 300 

GHz, thereby enhancing the yield of the third harmonic without disturbing the field distribution of the 

fundamental [18]. This design is dubbed “ET” and the reflection coefficient results obtained for it in 

simulation are shown in Table 1. Note that multenna matching is of a resonance nature, so that the 

multenna is poorly matched at other frequencies apart from at 0.1 and 0.3 THz. Such low reflection 

coefficients indicate that most of the energy is transmitted through the multenna, maximizing S21 at these 

operating frequencies. 

 

Table 1. S11 parameters of the “ET” multenna 

Frequency (THz) ET (dB) 

0.1 -10.28 

0.3 -22.70 

 

1mm

X y 

x 

z 

(a) (b) 
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While the size of the slot-ring is consistent for the frequency studied, it nonetheless proves 

impracticably small; i.e. the element is difficult to manipulate for soldering and measurement and some 

peculiarities may result. The slightly off-centred diode seen in Fig 1b is one such example.  

Four different prototype multennas have been designed. One example of each was defined 

photolithographically on a 20 x 20 mm
2 

tile of quartz, Fig 2. For ease of handling and test, a choice was 

made not to dice each prototype prior to soldering the diodes. Rather, the prototypes are retained in the 

array format throughout: it will be shown below that this does not adversely affect the testing of the 

individual elements. 

3. The 4-element Prototype 

Of the 20 x 20 mm
2
 area of the tile upon which the prototype multenna elements are set, only the 

central 15 x 15 mm
2
 area is ‘active’. The corresponding footprint-region of the antenna elements is 

highlighted in Fig. 2. The outer area provides a margin for safe handling. The prototype multennas’ centres 

are separated by a minimum of 7.5 mm, corresponding to 7.5λ at 300 GHz and 2.5λ at 100 GHz.  

 

Fig. 2:  Schematic of the quartz tile upon which four prototypes of the multenna are set. 

 

From the point-of-view of a given multenna, the size of its substrate has been markedly increased 

from 1 (initial simulations were performed for 1 mm
2
 multenna) to 7.5 mm, or 10 mm if the border to the 

next multenna is considered. Even so, to further guarantee no unwanted coupling between prototypes, 

another simple decoupling feature is added to the design, as covered in section 3.2. 

 

 

Proto3 Proto4 

Proto1 Proto2 

7.5 mm 

15 x 15 mm
2
 active area 20 x 20 mm

2
 

7.5 mm 

7
.5

 m
m

 
7

.5
 m

m
 

X y 

x 

z 

a 
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3.1 Impact of the substrate size-extension on multenna performance. 

The increase of the antennas’ sizes concerns only their quartz substrate. The 1 mm
2
 conductive part 

remains fixed and the 7.5 fold increase in substrate does not affect the radiating performance. The 

impedance of the antenna in both cases has been carefully checked to ensure the matching remains 

unchanged over the operating band. Comparative results of the real and imaginary parts of the input 

impedances for the “ET” multenna are shown in Fig 3. 

 

 

a                                                                              b 

Fig. 3: a) real and b) imaginary parts of the input impedance of the antenna for the case of a 1 x 1 mm
2
 (green), and a 

10 x 10 mm
2
 (blue), substrate area. 

Even if there are slight differences between the results of a quasi-infinite substrate area and that of a 

1 mm
2
 area, the impedances, specifically at 100 and 300 GHz, are very close and stay within a few ohms, 

as shown in Table 2. 

Table 2: Input impedances of the multenna for the cases of substrate areas being 1 and 10 mm2 at 100 and 300 GHz. 

Frequency (GHz) 1 mm
2
 substrate 10 mm

2
 substrate 

100 7.2 + j43.7 7.3 + j42.6 

300 10.8 - j16.9 10.8 - j16.2 

 

3.2 Decoupling elements 

A further reduction in coupling is ensured by orienting multennas such that nearest neighbours 

couple to orthogonal electromagnetic field polarisations. With reference to Fig. 1, the main polarization of 

the slot-ring is along the direction of the diode, i.e. the x-axis. Considering Fig. 2, if multenna #1 is 

polarized along the x-axis, then so is device #3, with #2 and #4 are polarized along the orthogonal y-axis, 

as shown in Fig 4. 

 
Sub10mm 

Sub1mm 

Sub10mm 

Sub1mm 
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Fig. 4: a) Orientation for the polarization of the E-field for each prototype on the quartz tile and b) the actual display on 

the quartz tile with diodes (black rectangles), indicating the polarization orientation. 

The final simulation results on coupling between the elements of this “array” are shown in Fig. 5. 

Simulations are performed using time-domain solver of CST Microwave studio. 

 

a                                                                                     b 

Fig. 5: S parameters for each multenna prototype on the tile a) at 100 GHz and b) 300 GHz. 

It is clear from the graph that the coupling between elements is always below -30 dB and so they may be 

practically considered as isolated. It is observed that the isolation between elements 1 and 2 or 1 and 4 is 

stronger, i.e. ~ -50 dB, than for 1 and 3, ~ -40 dB, which are diagonally displaced. This is explained by the 

difference of polarization between neighbouring elements, unlike diagonal elements. In more detail 

simulation results at the two frequencies of interest (100 and 300 GHz) are presented in Table 3. 

 

 

 

3 

1 2 

4 

a 

b 

Diode 
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Table 3: Transmission coefficients (in dB) between different multenna elements on the same tile at 100 and 300 GHz. 

 100 GHz 300 GHz 

Isolation  Co-polarisation 

configuration 

Cross-polarisation 

configuration 

Co-polarisation 

configuration  

Cross-polarisation 

configuration 

S12 -32.3 -48.7 -35.3 -56.7 

S13 -37.2 -37.3 -40.3 -39.9 

S14 -43.4 -56.3 -45.7 -53.5 

S23 -43.4 -49.1 -45.7 -55.1 

S24 -37.2 -37.4 -40.3 -39.9 

S34 -32.9 -49.6 -35.8 -54 

 

With the cross-polarisation configuration an added isolation of about 20 dB is gained. The isolation is 

improved from between -6.0 and -21.4 dB between neighbouring elements. Horizontal isolation (S12 and 

S34) is better than vertical (S14 and S23). Isolation between neighbouring vertical elements is already low 

without mutual orthogonal polarisation states, approximately -43 dB, and so does not need enhancement. 

No change is noticed between the diagonal elements S13 and S24. This follows since each share a common 

polarisation state. Even with the distance between neighbouring elements greater than 2λ at 100 GHz and 

6 λ at 300 GHz, the change of polarization state between these elements still affects their mutual coupling. 

 

3.3 Measurement using the optical table 

In preparation for characterisation the tile is placed in a rotating holder on the optical measurement 

bench: Fig. 6. 

 

Fig. 6: The sample with four multennas on a quartz tile fixed in the rotating holder. 

The holder is aligned with respect to the optical system beam waist (see below), so that only the 

multenna in upper left-hand quadrant of the tile is irradiated. In the initial configuration, prototype 1 is 
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illuminated according to its polarization configuration. Prototype 2 is brought into the beam by rotating the 

holder by 90° in the plane of multenna; so each prototype is considered in turn, as shown in Fig 7. 

 

 

    

Fig. 7: The measurement procedure for characterising each prototype antenna in turn for a given polarisation condition 

by rotating the holder of the tile.  

4. Measurement results 

Initially, free space transmission properties of the multennas are tested separately at 100 and 

300 GHz. A conventional Z-bench, Fig. 8, is used to acquire S21 transmission data over the WR-10 and 

WR-3 waveguide bands.  The associated VNA’s frequency extender heads (shown in blue), are controlled 

by a mm-wave module driven by the network analyser. The heads’ waveguide ports are coupled to free-

space by corrugated feedhorns. A pair of off-axis ellipsoidal mirrors collimates radiation onto an inner-pair 

of short focal length mirrors at whose common focal point the sample is placed. The beam-waist at the 

focus is 4.5 mm and 3 mm at 100 and 300 GHz respectively, while the multenna’s metallised area is only 

1 mm
2
. To illuminate only one of the four multennas, a 3 mm diameter iris is placed 2 mm before the 

multenna. 3 mm is chosen as a compromise between allowing sufficient illumination and still capturing 

the multenna signature (a smaller diameter would also make alignment more problematic).  

Fig. 9 shows the measured amplitude and phase of S21 for ET multenna element over respective 

waveguide bands. The measurement conditions for Fig. 9 a) and b) are identical, except for the change of 

the multiplier heads (shown in blue in Fig. 8), for WR-3 and WR-10 bands, respectively. Note that beam 

parameters and SNR of WR-3 and WR-10 heads are different. Free space S21 transmission coefficient 

served as a reference and was normalized to zero before each reading. The free space S21 transmission 

coefficient served as a reference and was normalized to zero before each reading. The plots in Fig. 9 are 

obtained by subtracting the quartz transmission from the multenna-on-quartz transmission to display the 

actual multenna signature. Strictly speaking such a subtraction would not result in a pure multenna 

response due to the effect of Fabry-Perot (FP) reflections within the substrate. The total contribution of 

these internal reflections is different for quartz and multenna-on-quartz scenarios. However following such 

3

1 2

4 1 

2 3

4 1 2

3 4

2

4 1 

3

Rotation of 90° Rotation of 90° 

Illuminated prototype 

Rotation of 90° 
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a procedure still provides a reasonable approximation of the multenna response, since the response is 

dominated by the transmission of the bare quartz. The procedure of mathematical elimination of substrate 

response from multenna readings is done only to check the resonance behaviour of the multenna; when 

evaluating the tripling performance of the multenna such approach is not needed. The trace at 100 GHz is 

noisier than at 300 GHz since the iris aperture obscures a larger portion of the beam, thus reducing the 

signal to noise ratio. At the resonance frequency, amplitude reaches an extremum and phase undergoes its 

most rapid change. In the WR-10 band a clear transmission resonance is present at ~103.5 GHz. It deviates 

from the modeled 100 GHz center-frequency within acceptable limits, probably due to uncertainties in 

material properties used in simulations. On the other hand, the broader transmission peak at 300 GHz, 

despite the nearly-flat phase curve, is also an indication of multenna resonance. As discussed above, the 

multenna structure is optimized for a low reflection coefficient (or equivalently a transmission peak) at 

both operating frequencies. Thus, maxima in transmission at 100 and 300 GHz are expected and agree 

with simulations.  

The resonances shown in Fig. 9 have a low Q-factor for two main reasons: (i) only part of the signal 

is transmitted through to the multenna; the remainder spills around it, thereby muting the resonant 

response; (ii) the multenna is loaded with the (non-linear) capacitive Schottky diode, which introduces 

losses to the circuit, thereby lowering the Q-factor. Despite the fact that numerical optimization of the 

multenna includes detail of the diode structure, it is still challenging to feed accurate material properties to 

the solver, particularly at 300 GHz. 

  

           Fig. 8: Schematics (left) and a picture (right) of the quasi-optical Z-bench incorporating an inner pair of confocal 

mirrors braced by off-axis ellipsoidal coupling mirrors. 
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           Fig. 9: Transmission measurements of the single multenna element in WR-10 and WR-3 waveguide bands normalised to 

the corresponding transmission of the quartz dielectric. Red lines show amplitude data, blue indicates phase.  

 

For the characterization of the tripling action of the multenna, a clinotron mm-wave oscillator source, 

tuneable over 93 – 100 GHz, is used to feed the multenna at its ≈100 GHz fundamental resonance: Fig 9 

[20]. The clinotron’s WR-10 output is coupled to an ultra-Gaussian corrugated feed-horn to provide both a 

low VSWR (essential for clinotron stability), and a high gain. Radar absorbing material is placed to form a 

conduit between horn and waveguide attenuator in order to suppress multipath effects. Radiation is also 

coupled by matched feedhorns to the tuneable waveguide attenuator, which can handle a maximum power 

of 70 mW. Since typical output power of the clinotron oscillator is a few Watts, an appropriate source-

separation introduces free-space loss to prevent overloading of the attenuator. A feed-horn at the output of 

the attenuator efficiently couples radiation to the first of a confocal pair of mirrors. This mirror is 

ellipsoidal with a focal length of 250 mm; the second is a 100 mm focal length, off-axis, ellipsoid. The 

combination of these works to control the projection of the beam-waist over a given multenna element. 

The emerging field from the frequency tripling multenna is detected by the PNA-driven mm-wave module 

operating in the WR-3 band (220 – 325 GHz), with a corrugated receive horn. The schematic of the 

measurement setup for testing the multenna performance is shown in Fig. 10.  

   

Fig. 10: Schematic of the measurement setup for testing of the frequency tripling performance of the multenna 

The initial measurements, performed using the setup in Fig. 10, have shown the multenna to function 

as a tripler. Achievable simulated efficiency of unbiased diode-based triplers in this frequency domain is 
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approximately 7% [21]. However, efficiency obtained for the multenna, calculated as the ratio of 

generated power at 300 GHz to the incident power at 100 GHz, is about 3 orders of magnitude lower than 

expected. One of the reasons for lower efficiency measured in this study is insufficient excitation power 

(1-2 mW). Also QO multiplier circuits normally have input and output matching dielectric plates, which 

enhance the output power several times [14]. These tuning slabs, as well as 100 GHz and 300 GHz 

bandpass filters, were not used in the measurements. Lastly, possible errors in alignment of the multenna 

with the beam axis and the diode on the multenna itself (a slight asymmetry in diode position as seen in 

Fig. 1b), could cause lower efficiency. Further work is aimed to resolve these issues. 

5. Conclusions 

In order to verify the simulated performance of a multenna, several practical modifications are made 

the our initial fabrication and measurement procedure as a prerequisite to the development of a new, 

coherent, THz source, based upon spatial power-combining of elemental beams. The different antenna 

prototypes under study are defined on a shared substrate tile, since separately they are small (area ~ 1 mm
2
) 

and therefore hard to manipulate. The common substrate increases the effective substrate area of each 

element by a factor of 10. This change is retro-simulated and the differences in input impedance of each 

element are found to be minimal. To ensure that each prototype is isolated from its neighbours on the 

common tile, the distance between elements is maximised and only four elements are placed per tile. 

Further isolation is engineered by orthogonally setting the polarization state of each element with respect 

to its neighbour. A 90° rotation of the multenna-holder allows each prototype multenna element to be 

characterised in turn. Transmission measurements are performed showing the resonant nature of the 

multenna and its suitability for operation as a tripler. The next prototypes are to be fabricated on 

completely gold-plated substrates, in contrast to just patches in this study. This will avoid leakage of 

radiation around the multenna. The experimental setup for testing the tripling performance of a multenna 

is described. Initial characterization of tripling efficiency is performed and the multenna is shown to triple 

the incident signal. Future work is to be directed on the optimization of the output power by adding 

matching slabs, investigation of power dependence of the multenna yield and precise alignment of the 

multenna with respect to the plane of polarisation of Tx. 
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Fig. 1: One possible design of the multenna, termed “ET”: it is a modified slot ring with stubs to enhance 
third harmonic yield. (a) Shows a schematic of the antenna and, (b) is a photograph of the manufactured 

antenna. The grey rectangle in (b) is the chip that carries the Schottky diode.  
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Fig. 2:  Schematic of the quartz tile upon which four prototypes of the multenna are set.  
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Fig. 4: a) Orientation for the polarization of the E-field for each prototype on the quartz tile and b) the actual 
display on the quartz tile with diodes (black rectangles), indicating the polarization orientation.  
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Fig. 5: S parameters for each multenna prototype on the tile a) at 100 GHz and b) 300 GHz.  
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Fig. 6: The sample with four multennas on a quartz tile fixed in the rotating holder.  
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Fig. 7: The measurement procedure for characterising each prototype antenna in turn for a given 
polarisation condition by rotating the holder of the tile.  
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Fig. 8: Schematics (left) and a picture (right) of the quasi-optical Z-bench incorporating an inner pair of 
confocal mirrors braced by off-axis ellipsoidal coupling mirrors.  
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Fig. 9: Transmission measurements of the single multenna element in WR-10 and WR-3 waveguide bands 
normalised to the corresponding transmission of the quartz dielectric. Red lines show amplitude data, blue 

indicates phase.  
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Fig. 10: Schematic of the measurement setup for testing of the frequency tripling performance of the 
multenna  
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