10 research outputs found

    Challenge of Pigs with Classical Swine Fever Viruses after C-Strain Vaccination Reveals Remarkably Rapid Protection and Insights into Early Immunity

    Get PDF
    Pre-emptive culling is becoming increasingly questioned as a means of controlling animal diseases, including classical swine fever (CSF). This has prompted discussions on the use of emergency vaccination to control future CSF outbreaks in domestic pigs. Despite a long history of safe use in endemic areas, there is a paucity of data on aspects important to emergency strategies, such as how rapidly CSFV vaccines would protect against transmission, and if this protection is equivalent for all viral genotypes, including highly divergent genotype 3 strains. To evaluate these questions, pigs were vaccinated with the Riemser® C-strain vaccine at 1, 3 and 5 days prior to challenge with genotype 2.1 and 3.3 challenge strains. The vaccine provided equivalent protection against clinical disease caused by for the two challenge strains and, as expected, protection was complete at 5 days post-vaccination. Substantial protection was achieved after 3 days, which was sufficient to prevent transmission of the 3.3 strain to animals in direct contact. Even by one day post-vaccination approximately half the animals were partially protected, and were able to control the infection, indicating that a reduction of the infectious potential is achieved very rapidly after vaccination. There was a close temporal correlation between T cell IFN-γ responses and protection. Interestingly, compared to responses of animals challenged 5 days after vaccination, challenge of animals 3 or 1 days post-vaccination resulted in impaired vaccine-induced T cell responses. This, together with the failure to detect a T cell IFN-γ response in unprotected and unvaccinated animals, indicates that virulent CSFV can inhibit the potent antiviral host defences primed by C-strain in the early period post vaccination

    Isolation of the Pandemic (H1N1) 2009 virus and its reassortant with an H3N2 swine influenza virus from healthy weaning pigs in Thailand in 2011

    No full text
    A total of 300 nasal swabs were collected from 5 pig farms in two provinces in the Eastern part of Thailand in February 2011 and were subjected to viral isolation of influenza A viruses. Two H3N2 and 6 H1N1 influenza A viruses were isolated from swabs collected from clinically healthy weaning pigs on farms in Chonburi and Chachoengsao provinces, respectively. The H3N2 isolates consisted of the hemagglutinin (HA) and neuraminidase (NA) genes closely related to Thai SIVs and derived from a cluster of human seasonal H3N2 strains circulating around 1996-1997. The remaining gene segments of the isolates originated from the Pandemic (H1N1) 2009 (A (H1N1) pdm09) virus. Antigenicity of the H3N2 isolates was distinguishable from a human seasonal vaccine strain in the 1996-1998 seasons that represented antigenicity of the seasonal strains around 1996-1998. Nasal swabs from a Chachoengsao farm yielded A (H1N1) pdm09 viruses in chicken embryonated eggs and MDCK cells. A (H1N1) pdm09 viruses isolated in this study grew poorly in MDCK cells. Deduced amino acid sequences of the HA1 region of the HA protein of egg isolated viruses were identical to the sequences directly amplified from original swab samples. Our result demonstrated that the A (H1N1) pdm09 virus has been established in the Thai pig population and this has resulted in genetic reassortment with Thai SIV that previously circulated among pigs

    Characterisation of experimental infections of domestic pigs with genotype 2.1 and 3.3 isolates of classical swine fever virus.

    No full text
    The early identification of classical swine fever epizootics is hampered by difficulties in recognising early signs of infection, due to a lack of specific clinical signs. In addition many textbook descriptions of CSF are based on observations of disease caused by historic, mainly genotype 1, strains. Our objective was to improve our knowledge of the diverse range of signs that different CSFV strains can cause by characterising the experimental infection of domestic pigs with both a recent strain of CSFV and a divergent strain. Conventional pigs were inoculated with a genotype 2.1 isolate, that caused an outbreak in the UK in 2000, and a genotype 3.3 strain that is genetically divergent from European strains. This latter strain is also antigenically distinct as it is only poorly recognised by the CSFV-specific monoclonal antibody, WH303. Transmission was monitored by use of in-contact animals. Clinical, virological and haematological parameters were observed and an extended macro- and histopathological scoring system allowed detailed characterisation of pathological lesions. Infection with the genotype 2.1 isolate resulted in a similar outcome to other recent genotype 2 European strains, whereas the genotype 3.3 strain produced fewer and delayed clinical signs, notably with little fever. This strain would therefore be particularly difficult to detect in the early stages of infection and highlights the importance of encouraging early submission of samples for laboratory diagnosis. As representatives of recent and divergent CSFV isolates, these strains are good candidates to study the pathogenesis of current CSFV isolates and as challenge models for vaccine development

    Characterisation of experimental infections of domestic pigs with genotype 2.1 and 3.3 isolates of classical swine fever virus.

    No full text
    The early identification of classical swine fever epizootics is hampered by difficulties in recognising early signs of infection, due to a lack of specific clinical signs. In addition many textbook descriptions of CSF are based on observations of disease caused by historic, mainly genotype 1, strains. Our objective was to improve our knowledge of the diverse range of signs that different CSFV strains can cause by characterising the experimental infection of domestic pigs with both a recent strain of CSFV and a divergent strain. Conventional pigs were inoculated with a genotype 2.1 isolate, that caused an outbreak in the UK in 2000, and a genotype 3.3 strain that is genetically divergent from European strains. This latter strain is also antigenically distinct as it is only poorly recognised by the CSFV-specific monoclonal antibody, WH303. Transmission was monitored by use of in-contact animals. Clinical, virological and haematological parameters were observed and an extended macro- and histopathological scoring system allowed detailed characterisation of pathological lesions. Infection with the genotype 2.1 isolate resulted in a similar outcome to other recent genotype 2 European strains, whereas the genotype 3.3 strain produced fewer and delayed clinical signs, notably with little fever. This strain would therefore be particularly difficult to detect in the early stages of infection and highlights the importance of encouraging early submission of samples for laboratory diagnosis. As representatives of recent and divergent CSFV isolates, these strains are good candidates to study the pathogenesis of current CSFV isolates and as challenge models for vaccine development

    Review of influenza a virus in Swine worldwide: a call for increased surveillance and research

    Get PDF
    Pigs and humans have shared influenza A viruses (IAV) since at least 1918, and many interspecies transmission events have been documented since that time. However, despite this interplay, relatively little is known regarding IAV circulating in swine around the world compared with the avian and human knowledge base. This gap in knowledge impedes our understanding of how viruses adapted to swine or man impacts the ecology and evolution of IAV as a whole and the true impact of swine IAV on human health. The pandemic H1N1 that emerged in 2009 underscored the need for greater surveillance and sharing of data on IAV in swine. In this paper, we review the current state of IAV in swine around the world, highlight the collaboration between international organizations and a network of laboratories engaged in human and animal IAV surveillance and research, and emphasize the need to increase information in high-priority regions. The need for global integration and rapid sharing of data and resources to fight IAV in swine and other animal species is apparent, but this effort requires grassroots support from governments, practicing veterinarians and the swine industry and, ultimately, requires significant increases in funding and infrastructure.link_to_OA_fulltex
    corecore