4,313 research outputs found

    Climate-dependent propagation of precipitation uncertainty into the water cycle

    No full text

    Dimensional crossover and cold-atom realization of topological Mott insulators

    Get PDF
    We propose a cold-atom setup which allows for a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. We further show that additional Hubbard onsite interactions can give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of a quantum state of matter which merely exists because of the interplay of the non-trivial topology of the band structure and strong interactions. While the theoretical understanding of this phase has remained elusive, our proposal shall help to shed some light on this exotic state of matter by paving the way for a controlled experimental investigation in optical lattices.Comment: 4+ pages, 3 figures; includes Supplemental Material (3 pages, 1 figure

    Darkness after the K-T impact: Effects of soot

    Get PDF
    Dust from the K-T impact apparently settled from the atmosphere in less than 6 months, restoring sunlight to minimum photosynthesis levels in about 4 months. However, the discovery of a global soot component in the boundary clay makes it necessary to reconsider the problem, as soot particles not only are smaller (0.1 vs. about 0.5 micrometer) and thus settle more slowly, but also are better light absorbers (optical depth of 13 mg soot cm(-2) about 1800; and are more resistant to rainout. Still, the darkness cannot have lasted very much longer than 6 months, else no larger animals would have survived. Perhaps the soot coagulated with the rock dust and fell out with it. Evidence on this point may be sought at a relatively undisturbed K-T boundary site, such as Woodside Creek, N.Z. There the boundary clay and lowermost Tertiary strata are finely laminated and show large chemical and isotopic differences on a millimeter scale, apparently representing a detailed time sequence. Researchers studied a 3 m section across the boundary at this site, analyzing the principal forms of carbon (soot, elemental C, kerogen, and carbonate) as well as 33 elements. Correlations among the elements were sought. Apparently soot came early and coagulated with the ejecta, staying with them for the primary fallout and in the next 5 cm, but then parting company, perhaps due to size sorting

    Research computing at ILRI

    Get PDF

    A search for evidence of large body Earth impacts associated with biological crisis zones in the fossil record

    Get PDF
    The natural history of the Earth, how the present plant and animal species developed, how others completely died out, etc., was studied. The rock strata sampled and studied were at the time of deposition at sea bottom. It was found that, exactly at the stratigraphic level corresponding to the extinction, a thin clay layer was greatly enriched in the the rare element iridium. It was hypothesized that the excess irridium at the boundary came from a large steroid like object that hit the earth, and that the impact of this object threw up a dust cloud dense enough and long lasting enough to bring about the extinction of a wide variety of plants and animals, producing the unique break in in the fossil record, the cretaceous-tertiary boundary. The same iridium and platinum metals enrichement are found in a thin clay layer that corresponds with the boundary as difined by sudden radical changes in plant populations. The irridium enrichement is confirmed at other fresh water origin rites in the Raton Basin

    Time resolution below 100 ps for the SciTil detector of PANDA employing SiPM

    Full text link
    The barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR in Darmstadt is planned as a scintillator tile hodoscope (SciTil) using 8000 small scintillator tiles. It will provide fast event timing for a software trigger in the otherwise trigger-less data acquisition scheme of PANDA, relative timing in a multiple track event topology as well as additional particle identification in the low momentum region. The goal is to achieve a time resolution of sigma ~ 100 ps. We have conducted measurements using organic scintillators coupled to Silicon Photomultipliers (SiPM). The results are encouraging such that we are confident to reach the required time resolution.Comment: 10 pages, 7 figure

    Global soil moisture data derived through machine learning trained with in-situ measurements

    Get PDF
    Measurement(s) wetness of soil Technology Type(s) machine learning Factor Type(s) soil layer • temporal interval • geographic location Sample Characteristic - Environment soil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.1479051

    Variability of soil moisture and sea surface temperatures similarly important for warm-season land climate in the community earth system model

    No full text
    Both sea surface temperatures (SSTs) and soil moisture (SM) can influence climate over land. This paper presents a comprehensive comparison of SM versus SST impacts on land climate in the warm season. The authors perform fully coupled ensemble experiments with the Community Earth System Model in which they prescribe SM or SSTs to the long-term median seasonal cycles. It is found that SM variability overall impacts warm-season land climate to a similar extent as SST variability, in the midlatitudes, tropics, and subtropics. Removing SM or SST variability impacts land climate means and reduces land climate variability at different time scales by 10%-50% (temperature) and 0%-10% (precipitation). Both SM- and SST-induced changes are strongest for hot temperatures (up to 50%) and for extreme precipitation (up to 20%). These results are qualitatively similar for the present day and the end of the twenty-first century. Removed SM variability affects surface climate through corresponding variations in surface energy fluxes, and this is controlled to first order by the land-atmosphere coupling strength and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Nino-Southern Oscillation. In addition, in specific regions SST-induced SM changes alter the "direct" SST-induced climate changes; on the other hand, SM variability is found to slightly affect SSTs in some regions. Nevertheless a large level of independence is found between SM-climate and SST-climate coupling. This highlights the fact that SM conditions can influence land climate variables independently of any SST effects and that (initial) soil moisture anomalies can provide valuable information in (sub)seasonal weather forecasts

    Emergent Critical Phase and Ricci Flow in a 2D Frustrated Heisenberg Model

    Full text link
    We introduce a two-dimensional frustrated Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. Classically the two sublattices decouple, and "order from disorder" drives them into a coplanar state. Applying Friedan's geometric approach to nonlinear sigma models, we show that the scaling of the spin-stiffnesses corresponds to the Ricci flow of a 4D metric tensor. At low temperatures, the relative phase between the spins on the two sublattices is described by a six-state clock model with an emergent critical phase.Comment: 4+ pages, 2 figure
    • …
    corecore