41 research outputs found

    The problems of selecting problems

    Get PDF
    We face several teaching problems where a set of exercises has to be selected based on their capability to make students discover typical misconceptions or their capability to evaluate the knowledge of the students. We consider four different optimization problems, developed from two basic decision problems. The first two optimization problems consist in selecting a set of exercises reaching some required levels of coverage for each topic. In the first problem we minimize the total time required to present the selected exercises, whereas the surplus coverage of topics is maximized in the second problem. The other two optimization problems consist in composing an exam in such a way that each student misconception reduces the overall mark of the exam to some specific required extent. In particular, we consider the problem of minimizing the size of the exam fulfilling these mark reduction constraints, and the problem of minimizing the differences between the required marks losses due to each misconception and the actual ones in the composed exam. For each optimization problem, we formally identify its approximation hardness and we heuristically solve it by using a genetic algorithm. We report experimental results for a case study based on a set of real exercises of Discrete Mathematics, a Computer Science degree subject

    Comparison of degradation behavior of newly developed encapsulation materials for photovoltaic applications under different artificial ageing tests

    No full text
    The main focus of this work is to investigate the degradation behavior of two newly developed encapsulants for photovoltaic applications (thermoplastic polyolefin (TPO) and polyolefin elastomer (POE)), compared to the most widely used Ethylene Vinyl Acetate (EVA) upon exposure to two different artificial ageing tests (with and without ultraviolet (UV) irradiation). Additive composition, optical and thermal properties and chemical structure (investigated by means of Thermal Desorption Gas Chromatography coupled to Mass Spectrometry, UV-Visible-Near Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis and Fourier Transform-Infrared spectroscopy, respectively) of the analyzed polymers were monitored throughout the exposure to artificial ageing tests. Relevant signs of photo-oxidation were detectable for TPO after the UV test, as well as a depletion of material’s stabilizers. Signs of degradation for EVA and POE were detected when the UV dose applied was equal to 200 kW h m−2. A novel approach is presented to derive information of oxidation induction time/dose from thermogravimetric measurements that correlate well with results obtained by using oxidation indices

    Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques

    No full text
    The high variety of tailor fitted molecular structures of polyethylene (PE) is very beneficial to fulfill requirements of various applications, however it poses a difficulty in the mechanical recycling of post-consumer PE products. To improve the quality of PE recyclates and increase the amounts of recyclates that can be used in new products, separation of PE waste by density and melt flow rate (MFR) during mechanical sorting is essential. Therefore, 25 virgin PE grades were used to manufacture compression molded plates that were then characterized by means of Attenuated Total Reflection - Fourier transformed IR (ATR-FTIR) and near IR (NIR) spectroscopy, NIR hyperspectral imaging and dual-comb spectroscopy. The results were used to build partial least squares regression (PLS) models to predict MFR and density. ATR-FTIR and laboratory NIR spectroscopy provided sufficient information to predict the density value of PE, whereas the MFR assessments was not possible. The PLS model from the industrial NIR data also only allowed the density-based classification of virgin PE grades. The PLS models built from transmission and reflectance dual comb spectroscopy infrared (DCS-IR) of selected samples clearly showed that density and MFR prediction can be carried out with high accuracy. As DCS-IR could be implemented on plastic sorting systems using a conveyor belt, the addition of this sensor in mechanical sorting line would lead to a significantly higher quality of recycled PE with narrow well-defined density and MFR ranges. Such an improvement would immensely support the targeted recycling rates and amount by the European Union and would make a significant step towards circular plastics

    Review of degradation and failure phenomena in photovoltaic modules

    Get PDF
    The degradation of photovoltaic (PV) systems is one of the key factors to address in order to reduce the cost of the electricity produced by increasing the operational lifetime of PV systems. To reduce the degradation, it is imperative to know the degradation and failure phenomena. This review article has been prepared to present an overview of the state-of-the-art knowledge on the reliability of PV modules. Whilst the most common technology today is mono- and multi-crystalline silicon, this article aims to give a generic summary which is relevant for a wider range of photovoltaic technologies including cadmium telluride, copper indium gallium selenide and emerging low-cost high-efficiency technologies. The review consists of three parts: firstly, a brief contextual summary about reliability metrics and how reliability is measured. Secondly, a summary of the main stress factors and how they influence module degradation. Finally, a detailed review of degradation and failure modes, which has been partitioned by the individual component within a PV module. This section connects the degradation phenomena and failure modes to the module component, and its effects on the PV system. Building on this knowledge, strategies to improve the operational lifetime of PV systems and thus, to reduce the electricity cost can be devised. Through extensive testing and failure analysis, researchers now have a much better overview of stressors and their impact on long term stability

    Remote explainability faces the bouncer problem

    No full text
    International audienceThe concept of explainability is envisioned to satisfy society’s demands for transparency about machine learning decisions. The concept is simple: like humans, algorithms should explain the rationale behind their decisions so that their fairness can be assessed. Although this approach is promising in a local context (for example, the model creator explains it during debugging at the time of training), we argue that this reasoning cannot simply be transposed to a remote context, where a model trained by a service provider is only accessible to a user through a network and its application programming interface. This is problematic, as it constitutes precisely the target use case requiring transparency from a societal perspective. Through an analogy with a club bouncer (who may provide untruthful explanations upon customer rejection), we show that providing explanations cannot prevent a remote service from lying about the true reasons leading to its decisions. More precisely, we observe the impossibility of remote explainability for single explanations by constructing an attack on explanations that hides discriminatory features from the querying user. We provide an example implementation of this attack. We then show that the probability that an observer spots the attack, using several explanations for attempting to find incoherences, is low in practical settings. This undermines the very concept of remote explainability in general

    Determination of the degree of ethylene vinyl acetate crosslinking via Soxhlet extraction: Gold standard or pitfall?

    No full text
    Since the beginning of PV module production, Soxhlet extraction has been the standard method for the determination of the gel content and the resulting calculation of the degree of crosslinking of the most common PV encapsulant ethylene vinyl acetate (EVA). While the method is deemed well established and several pertinent ASTM and ISO standards exist, in practise the actual procedures used in - and trusted by - both industry and R&D institutions vary substantially. To evaluate the reliability of the methods and the comparability of the results, a round-robin test involving seven independent European laboratories - one industrial PV module manufacturer and six R&D facilities - was conducted. The measurements were performed using homogenous, anonymized sample sets, each comprising five differently crosslinked EVA foils. The analysis showed that results obtained for the same samples may deviate significantly, but also that very different analytical procedures can yield com parable values. In a systematic study, the impact of various key parameters of the analytical process (extraction time and solvent, drying conditions, sample size and weight etc.) was investigated. Based on these findings, deviations observed in the round-robin study could be linked to their origins and the main pitfalls were identified. In conclusion, a suggestion for an optimised standard procedure was derived to ensure comparable results at all laboratories
    corecore