29 research outputs found

    Dynamic metabolic changes during prolonged ex situ heart perfusion are associated with myocardial functional decline

    Get PDF
    Ex situ heart perfusion (ESHP) was developed to preserve and evaluate donated hearts in a perfused beating state. However, myocardial function declines during ESHP, which limits the duration of perfusion and the potential to expand the donor pool. In this research, we combine a novel, minimally-invasive sampling approach with comparative global metabolite profiling to evaluate changes in the metabolomic patterns associated with declines in myocardial function during ESHP. Biocompatible solid-phase microextraction (SPME) microprobes serving as chemical biopsy were used to sample heart tissue and perfusate in a translational porcine ESHP model and a small cohort of clinical cases. In addition, six core-needle biopsies of the left ventricular wall were collected to compare the performance of our SPME sampling method against that of traditional tissue-collection. Our state-of-the-art metabolomics platform allowed us to identify a large number of significantly altered metabolites and lipid species that presented comparable profile of alterations to conventional biopsies. However, significant discrepancies in the pool of identified analytes using two sampling methods (SPME vs. biopsy) were also identified concerning mainly compounds susceptible to dynamic biotransformation and most likely being a result of low-invasive nature of SPME. Overall, our results revealed striking metabolic alterations during prolonged 8h-ESHP associated with uncontrolled inflammation not counterbalanced by resolution, endothelial injury, accelerated mitochondrial oxidative stress, the disruption of mitochondrial bioenergetics, and the accumulation of harmful lipid species. In conclusion, the combination of perfusion parameters and metabolomics can uncover various mechanisms of organ injury and recovery, which can help differentiate between donor hearts that are transplantable from those that should be discarded

    Mating dances and the evolution of language: What’s the next step?

    Get PDF
    The Darwinian protolanguage hypothesis is one of the most popular theories of the evolution of human language. According to this hypothesis, language evolved through a three stage process involving general increases in intelligence, the emergence of grammatical structure as a result of sexual selection on protomusical songs, and finally the attachment of meaning to the components of those songs. The strongest evidence for the second stage of this process has been considered to be birdsong, and as a result researchers have investigated the existence of various forms of grammar in the production and comprehension of songs by birds. Here, we argue that mating dances are another relevant source of sexually-selected complexity that has until now been largely overlooked by proponents of Darwinian protolanguage, focusing especially on the dances of long-tailed manakins. We end by sketching several lines of research that should be pursued to determine the relevance of mating dances to the evolution of language

    Husbandry Of Monodelphis Domestica In The Study Of Mammalian Embryogenesis

    Get PDF
    Monodelphis domestica, commonly called the laboratory opossum, is a useful laboratory animal for studying marsupial embryogenesis and mammalian development. Females breed year-round and the animals can be sustainably bred indoors. The authors draw on their own laboratory\u27s experience to supplement previously published research on laboratory opossums. They describe a breeding protocol that reliably produces timed-pregnant M. domestica. Additionally, the authors discuss general laboratory opossum husbandry techniques and describe how to collect, handle and culture embryos

    Brain size and neuron numbers drive differences in yawn duration across mammals and birds

    Get PDF
    Recent studies indicate that yawning evolved as a brain cooling mechanism. Given that larger brains have greater thermolytic needs and brain temperature is determined in part by heat production from neuronal activity, it was hypothesized that animals with larger brains and more neurons would yawn longer to produce comparable cooling effects. To test this, we performed the largest study on yawning ever conducted, analyzing 1291 yawns from 101 species (55 mammals; 46 birds). Phylogenetically controlled analyses revealed robust positive correlations between yawn duration and (1) brain mass, (2) total neuron number, and (3) cortical/pallial neuron number in both mammals and birds, which cannot be attributed solely to allometric scaling rules. These relationships were similar across clades, though mammals exhibited considerably longer yawns than birds of comparable brain and body mass. These findings provide further evidence suggesting that yawning is a thermoregulatory adaptation that has been conserved across amniote evolution

    Brain size and neuron numbers drive differences in yawn duration across mammals and birds

    Get PDF
    Recent studies indicate that yawning evolved as a brain cooling mechanism. Given that larger brains have greater thermolytic needs and brain temperature is determined in part by heat production from neuronal activity, it was hypothesized that animals with larger brains and more neurons would yawn longer to produce comparable cooling effects. To test this, we performed the largest study on yawning ever conducted, analyzing 1291 yawns from 101 species (55 mammals; 46 birds). Phylogenetically controlled analyses revealed robust positive correlations between yawn duration and (1) brain mass, (2) total neuron number, and (3) cortical/pallial neuron number in both mammals and birds, which cannot be attributed solely to allometric scaling rules. These relationships were similar across clades, though mammals exhibited considerably longer yawns than birds of comparable brain and body mass. These findings provide further evidence suggesting that yawning is a thermoregulatory adaptation that has been conserved across amniote evolution

    Brain size and neuron numbers drive differences in yawn duration across mammals and birds

    No full text
    Recent studies indicate that yawning evolved as a brain cooling mechanism. Given that larger brains have greater thermolytic needs and brain temperature is determined in part by heat production from neuronal activity, it was hypothesized that animals with larger brains and more neurons would yawn longer to produce comparable cooling effects. To test this, we performed the largest study on yawning ever conducted, analyzing 1291 yawns from 101 species (55 mammals; 46 birds). Phylogenetically controlled analyses revealed robust positive correlations between yawn duration and (1) brain mass, (2) total neuron number, and (3) cortical/pallial neuron number in both mammals and birds, which cannot be attributed solely to allometric scaling rules. These relationships were similar across clades, though mammals exhibited considerably longer yawns than birds of comparable brain and body mass. These findings provide further evidence suggesting that yawning is a thermoregulatory adaptation that has been conserved across amniote evolution
    corecore