17,896 research outputs found

    Unparticle physics and neutrino phenomenology

    Full text link
    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.Comment: 20 pages, 5 figures. Minor changes, final versio

    The Top Window for dark matter

    Full text link
    We investigate a scenario that the top quark is the only window to the dark matter particle. We use the effective Lagrangian approach to write down the interaction between the top quark and the dark matter particle. Requiring the dark matter satisfying the relic density we obtain the size of the effective interaction. We show that the scenario can be made consistent with the direct and indirect detection experiments by adjusting the size of the effective coupling. Finally, we calculate the production cross section for ttˉ+χχˉt\bar t + \chi \bar \chi at the Large Hadron Collider (LHC), which will give rise to an interesting signature of a top-pair plus large missing energy.Comment: 17 pages including 8 figures; added references and a footnot

    Identifying the Higgs Boson in Electron--Photon Collisions

    Full text link
    We analyze the production and detection of the Higgs boson in the next generation of linear e+ee^+e^- colliders operating in the eγe\gamma mode. In particular, we study the production mechanism e+γeγγe+He + \gamma \rightarrow e \gamma \gamma \rightarrow e + H, where one photon is generated via the laser backscattering mechanism, while the other is radiated via the usual bremsstrahlung process. We show that this is the most important mechanism for Higgs boson production in a 500500 GeV eγe\gamma collider for M_H\raisebox{-.4ex}{\rlap{\sim}} \raisebox{.4ex}{>}140 GeV. We also study the signals and backgrounds for detection of the Higgs in the different decay channels, bbˉb \bar b, W+WW^+W^-, and ZZZZ, and suggest kinematical cuts to improve the signature of an intermediate mass Higgs boson.Comment: (REVTEX 2.0, 12 pages and 9 figures available upon request, Preprint MAD/PH/753

    Improved Error-Scaling for Adiabatic Quantum State Transfer

    Full text link
    We present a technique that dramatically improves the accuracy of adiabatic state transfer for a broad class of realistic Hamiltonians. For some systems, the total error scaling can be quadratically reduced at a fixed maximum transfer rate. These improvements rely only on the judicious choice of the total evolution time. Our technique is error-robust, and hence applicable to existing experiments utilizing adiabatic passage. We give two examples as proofs-of-principle, showing quadratic error reductions for an adiabatic search algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially revised to generalize results to cases where several derivatives of the Hamiltonian are zero on the boundar

    An alternative model for the electroweak symmetry breaking sector and its signature in future e-gamma colliders

    Full text link
    We perform a preliminary study of the deviations from the Standard Model prediction for the cross section for the process eγνeWγe \gamma \rightarrow \nu_e W \gamma. We work in the context of a higgsless chiral lagrangian model that includes an extra vector resonance VV and an anomalous γWV\gamma W V coupling. We find that this cross section can provide interesting constraints on the free parameters of the model once it is measured in future eγe \gamma colliders.Comment: LaTex , 14 pages, 5 figures not included but available as postscript files upon request, NUB-3086/94-T

    The WW Boson Loop Background to H -> ZZ at Photon-photon Colliders

    Full text link
    We have performed a complete one-loop calculation of γγZZ\gamma \gamma \rightarrow ZZ in the Standard Model, including both gauge bosons and fermions in the loop. We confirm the large irreducible continuum background from the WW-boson loop found by Jikia. We have included the photon-photon luminosity, and find that the continuum background of transverse ZZ boson pairs prohibits finding a heavy Higgs with mass \gtap 350 GeV in this decay mode.Comment: 16 pages + 4 PS figures included (uuencoded), MAD/PH/77

    The Plasma Puddle as a Perturbative Black Hole

    Full text link
    We argue that the weak coupling regime of a large N gauge theory in the Higgs phase contains black hole-like objects. These so-called ``plasma puddles'' are meta-stable lumps of hot plasma lying in locally un-Higgsed regions of space. They decay via O(1/N) thermal radiation and, perhaps surprisingly, absorb all incident matter. We show that an incident particle of energy E striking the plasma puddle will shower into an enormous number of decay products whose multiplicity grows linearly with E, and whose average energy is independent of E. Once these ultra-soft particles reach the interior they are thermalized by the plasma within, and so the object appears ``black.'' We determine some gross properties like the size and temperature of the the plasma puddle in terms of fundamental parameters in the gauge theory. Interestingly, demanding that the plasma puddle emit thermal Hawking radiation implies that the object is black (i.e. absorbs all incident particles), which implies classical stability, which implies satisfaction of the Bekenstein entropy bound. Because of the AdS/CFT duality and the many similarities between plasma puddles and black holes, we conjecture that black objects are a robust feature of quantum gravity.Comment: 23 pages, 3 figures, V2: minor changes, ref added, appendix A.5 moved to body of pape

    Nonlocal Field Theories and their Gravity Duals

    Get PDF
    The gravity duals of nonlocal field theories in the large N limit exhibit a novel behavior near the boundary. To explore this, we present and study the duals of dipole theories - a particular class of nonlocal theories with fundamental dipole fields. The nonlocal interactions are manifest in the metric of the gravity dual and type-0 string theories make a surprising appearance. We compare the situation to that in noncommutative SYM.Comment: 34pp LaTeX, minor corrections, reference adde

    Detection of the heavy Higgs boson at γγ\gamma\gamma colliders

    Full text link
    We consider the possibility of detecting a heavy Higgs boson (mH>2mZm_H>2m_Z) in proposed γγ\gamma\gamma colliders through the semi-leptonic mode γγHZZqqˉ+\gamma\gamma \rightarrow H \rightarrow ZZ \rightarrow q\bar q \ell^+\ell^-. We show that due to the non-monochromatic nature of the photon beams produced by the laser-backscattering method, the resultant cross section for Higgs production is much smaller than the on-resonance cross section and generally {\it decreases} with increasing collider energy. Although continuum ZZZZ production is expected to be negligible, we demonstrate the presence of and calculate sizeable backgrounds from γγ+Z,qqˉZ\gamma\gamma\rightarrow \ell^+\ell^-Z,\,q\bar qZ, with Zqqˉ,+Z\rightarrow q\bar q,\,\ell^+\ell^-, respectively, and γγttˉbbˉ+ννˉ\gamma\gamma\rightarrow t\bar t\rightarrow b\bar b\ell^+\ell^-\nu\bar\nu. This channel may be used to detect a Higgs of mass mHm_H up to around 350~GeV at a 0.5~TeV e+ee^+e^- collider, assuming a nominal yearly luminosity of 10--20~fb1^{-1}.Comment: 18 pages (in RevTeX) plus Postscript figures (available by email or FAX), NUHEP-TH-92-29 and DOE-309-CPP-47. (Revised version: NO CHANGES to the manuscript, simply removed corrupted figure files

    Relativistic field theories in a magnetic background as noncommutative field theories

    Full text link
    We study the connection of the dynamics in relativistic field theories in a strong magnetic field with the dynamics of noncommutative field theories (NCFT). As an example, the Nambu-Jona-Lasinio models in spatial dimensions d2d \geq 2 are considered. We show that this connection is rather sophisticated. In fact, the corresponding NCFT are different from the conventional ones considered in the literature. In particular, the UV/IR mixing is absent in these theories. The reason of that is an inner structure (i.e., dynamical form-factors) of neutral composites which plays an important role in providing consistency of the NCFT. An especially interesting case is that for a magnetic field configuration with the maximal number of independent nonzero tensor components. In that case, we show that the NCFT are finite for even dd and their dynamics is quasi-(1+1)-dimensional for odd dd. For even dd, the NCFT describe a confinement dynamics of charged particles. The difference between the dynamics in strong magnetic backgrounds in field theories and that in string theories is briefly discussed.Comment: 19 pages, REVTeX4, clarifications added, references added, to appear in Phys. Rev.
    corecore